AN EXPLANATION

ne tup

GNOMONIC PROJECTION

or

THE SPHERE;

ID OF SUGII POINTS OF ASTRONOMY AS ARE MOST NBCESSARY IN TIIE USE OF ASTRONOVICAL MAPS,

DEINO

 MAPS OF THESTARS;

ASAI 80 OF 1IIE

SAX MAPS OF THE EARTH.

13 Y
aUGUSTUS DE MORGAN, OP FRIN, COLH, OAMB, SRORETARY OH THE NOYAI ASTR SOO. I

HONDON, BALDWIN. AND ORADOGY

[^0]
ADVERTISEMENT.

'His Theatise, though particularly intended for those who use ther of the maps mentioned in the ttle-page, will, I hope, be , und usefnl to all who wish to acquire a distinct idea of the conexion between projections in geneial, and the surface of the theie which they represent. The leading punciples deuved from n accurate consideration of any one inslance, ave those which pply to every other hitherto used, with the exception only of what - called Meicator's Piojection. But of all the methods in question, should decidedly prefer the Gnomonic Piojection for any purpose〔 geneial instruction, on account of its superios simplacity, and te ease with which the tianstion may be made from the sphere , its inclosing cube.
Simple as a globe may be in its punciple, there are many collities afforded by a map, and on the othes hand, there are ome points in which the former has decided advantages over the itter. A map may be considered ether as a catalogue for the ractical astronomer, or as a preture of the heavens for a leaner a the former point of view, it is of little consequence what pro'ction is employed - in the lattel, the pumary propenty of the inomonc Piojection, namely, that three stats which are in a line 1 the appaient heavens, ase also in° a line in the map, renders it,'
which would oblige us to follow it with one telescope, and alter the angle which the two make with one anothei,

If we imagine a tiansparent suiface of glass, of any form whatever, to be interposed between the eye and the objects which ae to be metured, and if straught lines be drawn though the various points of any object, all meeting at the eye, which may represent ays of light, the points at which these rays intersect the glass will together male on the glass the picture of the object chosen. This is represented in the followng diagiam, where A is the position of the cye, BCDE a part of the map or picture, and $P Q R a$ trangle to be represented. The space $p q r$ is that though some point of which every ray of light comong from any point of the triangle must pass, in oxder to reach the eye; so that if the pait $p q$ rese opaque, the tuangle could not be seen. It is the object of a map, simply to malk out this space; of a pucture, to mak it out in such a way, by coloun-
 ing and shadong, that the rays which come from the varous points of $p q r$ shall 1 esemble in colour and bulliancy those which would pass though $p q 1$, if the tansparency wore restored aud the object allowed to be seen.

Let us now suppose a spectator situaled at any point of the eath. So long as he looks at the fixed stas only, it is indifferent in what pait of her oubit the eath may be, since the distance of the fixed stais is so gieat, that there is no apparent change of place ansing out. of tho motion of the eath mher orbit. Thus m tavalling, objects which tue nent to us change then duections perceptubly in a very short time; and we leave behind us the things which shortly before were at oun ught or left hands This soit of change is percenved in instrumental observation with regard to the planets, whech are suilicently neal to show the earth's change of place as well as thair own. But just as in the former case it may be houns or days before the dnection in which we see a distant hull is perceptibly altered, on as the seamen say, before its beariny is changed; so on the heavens, the whole yearly tiack of the earth does not enclose a space which is perceptible from the nearest fixed star, so that the position of the latien will not
be sensibly altered by the orbital motion of the earth. The reader must attend to this point, because to this it is owing that we do not want different maps of the stars for different peliods of the year.

If a glass globe of considerable dımensions were constiucted alound the spectator, of which his eye was in the centre, and if we imagine, for the salke of illustiation, that the spectalou is not on the earth, but in vord space, where he can see the whole of the heavens, we may conceive a number of dakk spots to be placed upon this globe, in such a way as to hde from him the several stans which before wete visible Fore would be a preture of the relative positions of the stans, which would be a lastug one, sluce the appaent change of place ausing ont of the diunal motion of the ath is not tuken into account, the specintor being lived. If, however, we imagme the apparentrevolution of the stais caused by the last-mentioned motion to be eal, and to cany all the stans round the spectator in twenty-four hours, the globe may be supposed to tuin in the same time, and in the same duection, by whinch means each spol will contmue to keep the same sim out of view which it did at first

The visible pait of the heavens has the appeanance of half such a globe ; for stnce we form no alea of the relatuve distances of the different stans from ourselves, the lattor seem liko bught spots all situated at the same distance fiom us, at least it requres no efforl of imaglnathon to suppose them such. 'They give us, therefore, the rlea of being placed upon an immense sphere, of which the glass globe just alluded to is a small copy. We see fiom many teriestual appearances, that when distances become considerable, we lose the power of dis tunguishing one fiom another: thus when a large pat of the houcon is bounded by a chain of hills, very far fiom us, it seems as if thoy were manged in a part of a cucle, though perhaps they may be in a stanght heme interrupted by contmued and inegula varations

This curcula form of the horizon is a proof of the tendency to estomate those distances as equal, between which, from then magnitude, we have lost the power of discuminating. However arregular the ground may be, the boundary of the view, if in any degree extended in all durections, is citcula. As this phenomenon is cited in many popular works on astionomy as a proof of the rotundity of the eath, we will call attention to the fact that it would still remain, if the earth were a plane, indofintely extended on every side. Fol, such beng
the case, suppose a spectator at sea, with an open view in all duections; there would still be an apparent bounday, sunce all above the line A. B would be sky, and all below it water Thene would therefore be m every direction a visible line in which the sky and water meet, which would appear at the same distance in every duection, and would assume the
 form of a cucle, at the herght of the aye The proof of the rotundity of the eath, fiom the appearance of the hoizon at sea, ought to be derived from the line in whech the sky and water meet not being of the same height as the eye, which appears in the following dagiam to be the property of a sphenctal or other sound surface. This phenomenon is very clearly visible when the horizon is viewed fiom the top of a high hill

Fiom the actual survey of the heavens, the stans weie divided into groups, which were fancifully likened to figues of men and anımals, before any globes ol maps were constiucted Thus the astionomei had certain fixed notions of the positions which the constellations occupred relatively to one another, and to humself, that is, to the centre of the apparent celestial spheic, Tho stais weie distinguished fiom one another by the postions they occupied upon the body of the constellation to which they belonged, one was in the ught arm, another in the left, a thurd in the leg, and so on the fommation of attifical globes involved a difficulty, as the spectatol of the globe was not in the same position relatively to the pictured constellations as that in which he stood to the apparent celestal sphere; berng on the outside, and not at the centre If we conceive an aitist, painting the globe in the inteno1, according to his own notions of the relative position of the constellations, anothe peison vewing the figures from the exterior, though the glass, would see them all \quad ceversed ; that is, the hand which the mener obsever would call the right, is the left in the opmion of the extenor obsever. The same effect is produced by looking though a picture from the back. Most peisons must be anare of the manner in which it is necessary to anange the letters in the printer's composing-stick, in oidel that the impression
may be direct, or from left to 1 ight. If the types could be ananged as follows,

Maps of the Stars;

the mpiession taken fiom them would be the following,

aersta onlt lo acrisM

and vice vers \hat{a}; so that types set up in the second way exhibil an impression like the fist. 'The ieason why the printers' types cannot be set up in the first position, is that they cannot be completely $1 e-$ versed, sunce in that case they would only present the unlettered end of the metal to the paper unless stamped at both ench. The partinl reversal that the common types would bear, would simply amount to writing the sentence backwads, and upsidedown, as follows,

〔 sutus ouf jo sduIN

this is the appomance presented, not to a spectator outside the globe, but to one who stands upsiderlown mside the globe.

If the first aungement were made on thun paper, the second would appeat on looking at it though the paper, fund the same alteration takes place when that which has been witten or drawn on the wiside of a hauspment globe, is looked al fiom the outside. A spectator on the outside sees the figures as he ought to dany them on wood or copper, in order that the impuession may represent the appearances presented to a spectator on the inside.

Let us now suppose that the altist in the intenol, masteal of draving figues upon the globe, forms thin and flexible statues, in which the fiont and back, or the two sudes of the figuo is placed sideways, me peifectly formed, the theckness only being dimmished 'lhese he fastens on the intenor of the globe, with the fionts towads himp self. Hence where he sees the fiont of a figure, the spectator on tho outsude will sce the back; whete one secs the ught hand sode, the other will see the left, both will see the sume outhne, but differently filted up in the two rases, ns in the following picture, which exlibits the appearance of a figuc fiom the interior and exteroh.

Thenc will now be no confusion between the tight hand and the lefl, sunce both will fix upon tho same hand when asked for etther; but those stars whech to the spectatos in the interiot appeca in the breast of a figue, will to a spectator at the outsule appear in the back, We shall hereafler resume this sulyect in discussing the ica.

sons which have been thought sufficient for the adoption of the scheme followed in the maps we are descubing

The globe having been thus obtamed, and the position of the spectator settled, we come to the defintion and constuction of a map of the globe. By the woid map is generally understood a representation of part of a cusved surface on a plane, ol flat surface. If we wanted a map of a cone ol cyluder, the suifaces of which admit of being untolled without the relative position of muy points on the surface being altered, that is without any expansion, contasction, or teaung, a peifect map would be obtaned by sumply unioling the sufface But a sphere has not this propety of development, and whatever contuvance we may employ, the representation of a spheie upon a plane mist produce some distorion; that is, stars which aue at equal distances on the globe, cannot always be placed at equal clistances on the map. This is however an objection only when a map is considered as a peifect picture or resemblance of the whole heavens, but none whatever when we consider a map as no moie than a method of registering the different stars and nebulæ, whuch shall preserve contiguous portions of the heavens, when not vely large, in something like then relative positions It is sufficient for the purpose of iegistry, to have a plane or planes, so connected with the sphcie by a sumple mathematical law, that every point of the globe has one point, and no more, conesponding to it upon the planes; and for the purposes of general stmilitude, it is enough that objects which are very near upon the globe ale very near upon the map, the propertions of dis-
tance upon the latter not very much differng fiom those upon the former for example, if the stai Λ upon the globe is twice as far fiom B as fiom C, it is sufficient that on the map the distance of Λ from B does not differ much fiom twice the distance of A fiom C. Rejecting the latter condition, we may concerve vauous ways of constuctung a map euthei upon planes on other suifaces, which shall answer the principal condition of having one pomt and no mote on the map, conesponding to each pont upon the globe. For illustration, concerve the stass, constellations, \&e, to be diawn upon a globe with mk, which, as soon as it is lad on any point, smks duectly to the centie, without spieadug in any other drection; so that each poml, bo soon as it is maiked, is connected with the centie by a dulk lime Let paits of the globe be now cul away aegulaly or megulaly, with this condition only, that the centre is never to be laid open, and no excavation is to be made whach shall, after one of the dak lines has been divided fiom the centie, allow any higher pat of that Ine to contmue in the prece which contauns the centie In this case, whatever may be the form of the remaining prece, it 19 , theoretically speakng, as complete a acpresentation of the heavens as the globe itself: for though any sta be cul away, some other poont of the black line which 1 an fiom it to the centie will be laud open, and the stai will not be lost. If the sphere were placed upon a tuning lathe, and turned into anothet and smaller sphere with the same contie, thene would be no distortion, suce all hymes and distances would be lessened in the same proportion. Thas would hartly be a map, in the common sense of the woid, for it could not be umolled and land upon a plane, the spheie, as ahaady explaned, not beng devolopable. But if a cone or cyluder, or a cube or othen surfuce composed entrely of plane faces, weie cut out of the spheie, the surface thus obtaned might be umolled, as in the following dagiams; in whech

the cube forms six squares placed together, the cylinder a rectangle, and the cone a sector of a cucle.

We now exhibit one sort of map*, which we have purposely

[^1]chosen because it is not much like any of those which are most commonly seen. Differng entuely fiom a common picture in principle, and being altogethe unlike any representation of a globe, it will the better illustante oun definition that any figure will seive for a map, which has a point conesponding to every pount on the globe

It consisis of two cucular sectors, ECEFE and EDEFE, ench contanmeg moie than a semicucle, or about $254 \frac{1}{2}^{\circ}$. Each of these sectors is a deseloped cone, and the cones may be restored by cuttring out the sectors, and bungug together the pans of lines marked DE, D E, and CLE, CE The two cones thas formed will have the dimmeters of then bases double of then heights, and when put togethe base to base, will form a double cone or spindle, linving the distance between its opposite veitices (that is, twice the height of etther conc) equal to the diameter of the common base If we suppose a sphere made by the revolution of the cucle CEDF about its dameter $C D$, such a spundle-shaped surface will be

described by the peliphay or outhne of the squanc CDEF We may concelve the sturs reprosented on the globe as aliendy described, and the sphere then cut awny, all except the double cone, which will, on oun preceding suppositions, when unolled, evhibit the map we have chosen The only pouts whech are twice represented, are those on CE, CE, and DE, DE, as these lines are mate to conctide when the concs aie formeth.

We recommend the reader who is not used to such consuderations, not to lenve this dingram until he can well account for the vanous appearances exhbuted on the map, and reconcile them with the globe. As this constuction is not the one which we have to explum, we will not dwell unon it futher, except to point out the distotion
which must take place Lookng at CE, we see that the length from 30° to 60° is much less than that fiom 0° to 30°, on fiom 60° to 90°, whereas on the globe these me equal lengths.
Abandoning the illustration hitheito used, we will now suppose the readea able to cany in his mind the adea of a sphese with tha gicat and small cricle, daawn on it, logether with the stais and constellations, nud having starght limes diawn fiom the centio though evely stan, and though every point in the groat and smatl cucles. These lines must be supposed to be produced beyond the sulface of the spheie as far as may be necessaly. A greal cucle of the sphere is one which passes though the centre, and divides the whole into two equal hemisphenes Any othe! cucle is called a small cucle These names are cettanly not very expressive, suice a small citcle may be as nearly equal in magntude as we plense to a gieat cucle. It would be better, perhaps, to call them centuce and excenthic cucles; but custom las sanctioned the preceding appellations
Let us call the line diavin though any point of the sphere fiom the cente, the projecting line of that poout A gieat cucle, with all its projecting lines, forms a plane; a small cucle, with all its pro-

jecting lines, a cone. If any plane be placed outside a sphere, so as to be cut by the projectung lines coming fiom any patt of the sphero, a map of that part of the sphese will be formed uyton the plane, and the ponnt of the map which conlesponds to any star, is the point in which the projecting line of tlie star cuts the plane. If the globe wees trmanpaent, aud the stans placed upon it opaque, and if a small lamp wele placed in the cente, the shadows of the several stars would fall upon the conesponding points of the map.

The line or point on the map which represents any line or point on the glabe, is called its pajection Tho projection of a great chicle is a staught line, suce all its projectung lues the in onc plane, and a plane cuts a plane in a staught luie The form of the projection of a small cucle depends upon its position celatively to the centie, and to the map To determue the differant forms which this piojection may assume, we must recollect that the projecting lunes which pass through the centie of the globe, and the vanous points in the cucumforence of a small cucle, form a cone lf we, theiefore, let tho cucle reman in its place, and move the plane in whel the map is to bo diawn, the vanous figues in whinch the moving plame of the map cuts the cone will be those of wheh we aue in seach, namely, all the possble projections of the small pucle

Let O be the centie of the globe, and A the small cincle whinch is to be represented on the map. The vanous lines of the conical surface OAB me therefore those whech convey, so to speak, cach point of the cucle to its appropiate place on the map. If the latter be held parallel to the position of the small cucle, as at CDE ET, the representation of the cucle will be another cucle, differing fiom the former in size. If the map be held obliquely to the circle, as ah GII, but still in such a position as to cut the cone completely though, the representation will be a flattened figure, called, in geometry, an ellipse To get a clear aden of the other figures, we must

make another conical suffuce $O M$, behnd the sufface $O A 13$, by
lengtheniog all the projecting lines in the cone $O A B$, backwads towards the lefl. If the map be so held, as at $K L N$, that il shall never completely pass thiough the cone OAB, but yet at the same tume shall nevel cut the opposite cone $O M$, though evel so far lengthened either way, the representation of the cucle will be a figure, which, though resembling an oval at oo near the point P , spieads out withont limit on both sides of il , so that it has no point opposite to P . The point A has therefore no representative upon the map, for $O A$, beng parallel to the plane $\mathrm{K} \mathrm{L} N$, will never moet it The figue in which $\mathrm{KI} \mathrm{I}, \mathrm{N}$ cuts the cone in this case, is called a parabola. Now let the map be held still mose obliquely to the cucle, as at RSTV, so that having cot the cone at W, it also cuts the opposite cone at X , instead of passing though the other side of the first cone, as in H G , oi remaining always equidistant from the opposite parts of both cones, as in K . . The repesentation of the cucle will thenefore consist of two figuies proceeding from W and X, the finst towads the aght, the second towads the left Through O concerve two lines, OY and O Z, to be dawn, parallel to the plase IRSTV, and cuttong the corcle in Z and Y It is evident that all the figure to the ight of W is the representation of so much of the cacle as falls below Z and Y , ot is contanerl in the anc $/ / \mathrm{BB} \mathrm{Y}$, white the figure to the left of X iepiesents the arg $Z \mathrm{AY}$ Fol if fiom any point of the cucle which is above $\mathrm{Z} Y$, we diav a lone though O, it will fall towads the left of the plane RSTV, beyond X. Thes double figure is called an hyperbola, of which the two sepatate pats contaning W and X are ralled the branches. We shall not havo occasion to consider mose than one banch of an hyperbola, namely, that in which the point represented falls between its projection and the centie; that is, we shall only want the pat which contans. W, and corresponds to the lower arc Z B Y in our figure.

The geneal conclusion is as follows:-Let a point, a cucle, and a plane, be all sttuated in space, and let a shaght lue, which alivays passes though the poomt, and runs along the crrcumference of the cucle, be produced in both duections, till it mects the plane etthen on one side of the point oi the other, thus tiacing oul acuive on the plaue, while it moves romd the cucle. If the stiaght line alivays meets the plane, that is, nevel becomes parallel to it, an ellipse is
maked out on the plane. If the stiaight line is parallel to the plane m one position, and one position only, it traces out a parabola, and If it becomes parallel to the plane in two diflenent positions, it taaces out an hyperbola. The cuive is called the projection of the cucle upon the plane, the poont is called the pole of piojection, and the plane, the plane of projection.

The smplest way of applying the preceding zule is as follows: Lel O be the pole of projection, ABC tho plane of projection, and though O diav a plane $K \mathrm{~L} M$ paallel to $\triangle B C$ the planes ate to be considered as indefimtely extended in all directions It is a theorem in geometry, that all the lines which can be drawn though O, paallel to the plane $\triangle B C$, he entuely in the plane $\mathbb{K} L \mathbb{M}$, and the converse, that is, if a line passugg though O lie upon K K L_{M}, it will neves meet Λ B C, while, if it do not he upon $K \mathrm{I}$, M, it will meet $A B C$, if protluced far enough. If then a cucle cut the plane K L M, meeting it thesefore in two points P and Q, these are two lones which can be diawn though O, and the circumeronce, pauallel to the plane $\triangle \sqrt{3} \mathrm{C}$, namely $O P$ and $O Q$; if the cucle only 1 ests upon the plane $K L M$, of touches it in one pomi only, as R, theio is only one lune wheh can be dawn though O and the cncumference puallel to the plane $A B C$, namely, $O R$; while of the ciacle be entucly off the plane K. La M.S. as S, no line can be daawn though O and the circumference panillel to $\triangle 13 C$. In tho first case, the projection of the chele upon the plane $\triangle J B C$ fiom the pole O is an hyperbola; in the second, a parabola; in the thrd, an ellipse. Therefore, draw a plane though the pole of projection
parallel to the map or plane of projection: if thes plane cuts the cucle, the piojection is an hyperbola; if the citcle only meets the second plane, the projection is a parabola; if the cucle does not meet the second plane, the projection is an ellipse.

We now come to the descuption of the method which lins been employed in the maps to be explaned. The pole of projection is the centie of the globe The maps are planes, six in number, touching the globe so as to form the cucumscubed cube. The ligme called a

cube, which is that of a dee, or of a box, the length, beadul, and depth of which me equal, is bounded by six equal square suffaces, which are opposite, two and two. It has twelve stdes on edges, and elght* comess or angles Each side (as C a) has another side ($c \Lambda$) opposite and paallel to it, and two other sides (B and $\operatorname{D} b$) adjacent and parallel. In futtue, we shail denote four of the angles on coiners by the letters A, B, C, D, and the opposite angles by the smail letters a, b, c, d. Thus to find, mechanically, the side, suffec, ot angle which is opposite to any given one, change latge letters into small, and smail letters into lage For instance, the comer opposite to A is a, the side opposite to $B d$ is $b \mathrm{D}$, and the suffuce opposite to $\mathrm{BC} a d$ is $b c A D$.

The cube has a centie, in which the lines $\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c$, and $\mathrm{D} d_{1}$ meet, and this centie, which we call O, is also the centie of the sphere, when the later is placed inside the cube The point O is equelly distant fiom every corner, though, owing to the perspective,

[^2]In a pjramed, there aro four suffaces, four angles and six edges.
this docs not appea to be so in the figure. Any line drawn thought the centre cuts two opposite surlaces in points which aio stluated in the same parts of each. Thus the lunc XOa diawn though O cuts $\mathrm{BC} a d \mathrm{n} \mathrm{X}$, and $b r \mathrm{~A} \mathrm{D}$ m w; and of the square $\mathrm{B} \mathrm{C} a d$ were laid upon $b \in \mathrm{~A} D$, so that $d, \mathrm{~B}$, and C should comude with D, b, and c, X would concode with i. The line $\mathrm{X} \mathrm{O} x$ is also bisected in O

A plane passing though the centie O, and cutting the cubo, may

pass thiough four of the faces, not meeting the other two, as $\mathbb{P} Q p q$, or may cut all the six faces, as TRS $l \boldsymbol{r} s$. In the first case, the mteisection of the plane with the faces of the cube ts a parallelogiam; thus P Q is parallel to $p q$, and $\mathrm{P} q$ to $p \mathrm{Q}$. The test of thes figue may be casily found, when one side only is known. Suppose, for cxample, p Q remains, and the other sudes are abbed out To acstose $P q$, we go to the opposte map ${ }^{3 / 4}$, and finding the points D and C opposite to d and c, we take D P and $C q$ respectively equal to $d p$ and $c Q$. The points \mathbf{P} and q being thas found, we join p and q, q and P, and P and Q. In the sccond case, where the plane cuts the cube mall six maps, the figme $\mathrm{T} \mathrm{R} \mathrm{S} l v \mathrm{I}_{\mathrm{s}}$ is a heagron, or six-steded digue, with its opposite sudes TR and $l r$ patallel and equal, as also $R S$ athd $r s$, and $\mathrm{T} s$ and $l \mathrm{~S}$. Sach side cuts off a connes fiom the map in wheh it is found, instcaul of passing though opposite edges

Supposing all the stles of this figue to be abbed out, except 'I'R, it is not so obvous how to replace them. We can mmedately lay down $t r$, by takng a l equal to $\Lambda \mathrm{I}$, and ar equal to ΛR, but

[^3]before the section can be completed, we must find either S or s. Having found t, as just descubed, lengthen ITR and CD thll they meet in V Join V and l, meetung $\mathrm{D} b$ in S , which is the pount requied, and $t \mathrm{~S}$ one of the remaning saldes But this obinges us to tavel out of the map, and perhaps beyond the himuts of the paper. The following anthmetical method is preferable Suppose, for example, that each stde of the map is twelve meles, and that AT is thee inches, and A R five inches

Multiply the whole sude $A \mathrm{D}$ loy what is left after taking away $\Lambda \mathrm{R}$, and by A.T	12
	7
	3
hch gives	252
uiltiply each of the two $\mathrm{A} R$ and	$5 \times 9=45$

$$
\begin{aligned}
& \text { AT, by the remander atsing fiom } \\
& \text { subtiacting the other fiom } \wedge \mathrm{D}, \quad 3 \times 7=21
\end{aligned}
$$

and add the prodncts, whech givesG6

Divide the finst by the second, which gives $\mathrm{DS}=3 \mathrm{~g} 4$ inches, on a hitte more than $3 \frac{\pi}{10}$ inches this is also the lenglh of $d s$, whence all the points of the hexagon are determued.

It iemams to lay down the section when no side of it is given, bat one point only in each of two different maps When the two points are in opposile maps, as in ABCD and abod, let them be \mathbb{E} and P. On $\triangle B C D$ find p the opposite point to P , then the line $p \mathrm{E}$ pon duced to meet the sides, will be one of the sides of the section 1 eguned; to complete which one of the preceding rules must be apphed When the points me on adjacent maps, as on $\triangle B C D$ and $A B, c d$,
let X and Y be the points, and X S Y a pait of the section which passes thoongh them and the centie Dasw X M and Y N perpendicula to the common sde AB , bisect A 3 m m , and let L and K be the centies of the maps in question, whence FH K ou Il L is half the side of the cube. Measme II N and N Y, HM and MX, and also HK or HL , the half-side of the cube. Form the four followmg products
(l) II M multuphed by NY
(2.) H N multuphed by MX.
(3) The sum of $\mathrm{M} X$ and $\mathrm{N} Y$ muluphed by II K.
(4.) N Y multiphed by M X.

The lengith of IIS Sand its dinection may now be found as follons:
1 When N and M fall on the same side of II Add together the products (1) and (2), multuply by IL K , and divide by the difference of the products (3) and (4). The quotent is Il S.
When it happens that II S is greates than HA oi IL B, as on the left sulde of the figure, T may be determined as follows: Find S is and $S N$, by subtiactung IL B and IIN fiom LIS jusi found Multuply S 13 by Y N , and divide by $\mathrm{S} N$. The answen is 13 T , and B V may be found by proceeding in the same mannes with MX X and SM .

2 When M and N full on different sides of II , take the differenco of the products (1) and (2), multuply by It K, and divide by the difference of the products (3) and (1) The quoteritis in S , which must fall on the same side of II as N , if the greater of the products (1) and (2) contans il N , on as M , if the gieate product contans HM.
We shotild recommend the roulea who wishes to get a clean ulen of these and simila procosses, to provide humself with a culto of sof wood, of about thee maches in height, nud to hay down sevenal sectoons by the pinceeding rules. A common foot mile will seive for the mensuements, which may be made coneclly enough tor every practienl purpose to twenteeths of meches.
We now proceed to consider in whint way a cone, whose vatex is at the centic of the cube, will mitesect the several maps. Wo may see fiom prge 13, that if a cincto bo phaced miside the cube, which does not pass though its centic, the projection, if any, upon each single face of the cube will be the whole or part of an ellipse, or pant
of a parabola or hyperbola. Imagine a cubical 1oom, in the centre of which a small lamp is placed, while an opaque cucle is moved into various positions, thowing a well-defined shadow unon the walls or celling, or both. If the shadow be thrown entrely upon one wall, ot upon the cellug, it is an ellipse; for the ellipse is the only one of the thee figmes which is bounded, or contaned in a fimte spacc. But the sladow may be thrown patly on the wail or walls, and pautly on the celhng, so as to thow a part of one ellupse on the celluyg, and a part of another on the wall; or a pat of an ellipse on the cellug, and of an hyperbola on the wall, and so on. The iule given in page 13 will distugush the cases immediately. Datuv though the centie of the cube (the pole of projection), planes parallel to its several faces (the planes of projection), as in the following dangram; the left hand figure of which represents the cube with the planes

drawn unsde it, and the ughthand the planes by themselves. To take an mastance, theie is a cucle of which we see the part m. It does not. cut the cential plane $Q q R r$, and theiefore the projection of the crrcle on ABCD is an ellipse, or the part of it which falls on * ABCD is part of an ellipse. In this case we ought to say the projection is tself a cucle, because the cincle m is puallel to the plane ABCD. But the term ellpse includes circle, because the cuclo is atself a paiticular species of ellipse. In tho case of m as drawn ma the figure, the projection is completely thown on $\triangle B C D$, because the cone diawn through O and the circle m passes out fiom the cube through ABCD before it has widened enough to meet the other faces. But if the carcle m be increased, (as seen in the figure,)
some part of the projection may be thown on the sides, as in the left-hand figute, and the pats of th which lap over will not be pats of ellipses, but of hyperbolas, because the cucle m cuts the cential planes which ate paiallel to the lateral faces in question By mesensing the cucle m still more, it will soon happen that none of the projection is contaned in $\triangle B C D$, but is thown entuely on the fou lateral maps, where 1 will appear as four aces of hyperbolas. All thee cases me distunctly shown in the figue of page 20, over leal.

Let us now suppose a sphete, whose dameter is equal to ΛB, to be placed ansido the cube, with its centio al O It will therefore iest upon the cube at p, and will besides touch it in P, Q, q, R, and r. The vanous stans and constellations may now be projected upon the cube by ught lines hawn though the centie O. There ts no need to project the six points P, p, Q, q, R, and 1 , sunce they are both upon the sphere and the cube; and if though any other point of the spheie we diaw a straght line fiom O, this line will meet the culse min some one or other of the six faces, and we then know to what map, and to what pail of it, the sta which is at that point of the globe must be referied. Each face of the cube receives the representation of a suxth pail of the sphece, the form of wheh will be better understoorl fiom the following dugiams

In the middle figure, O is the centie of the cube and spliene, and is the veitex of a pyiamid, of which $\triangle B C D$, a face of the cube, is the base This pyramid contans a pat of the sphese, and separates il from tro ${ }^{\circ}$ lest. ΛB is the projection of $I_{A} M, \triangle C$ of $1, P, C D$ of $P \mathrm{~N}$, and D B of NM. The ancs N M, \&c, we each nbout 70 ${ }^{\circ}$ of the whole circumfenence, and the are which extends fiom coiner to corner is what iemains of 180° or $109 \frac{1}{2}^{\circ}$. The are which uns through the middle of the map is 90°. The visible hemisphere on the left contans the portion which conesponds to one complete map,
stusounded by the halves of the four contiguous maps the mvisible hemisphese on the other side contauns the iemaining halves of the foul latter, together with the sisth map, which completes the whole sphere. The visible part of the globe on the aght contans two com. plete maps, and the halves of two otheis.

Returnung to the figuie in page 18, the globe of the henvens is so placed within the cube, that P is the noth pole, and p the south pole. Ilence $Q R q r$ is the representation of the equator. This will reman if we suppose the globe to tun inside the cube on the axis $P P$; we stop th when the equinoxes, or points mothel the ecliptic meets the equator, have come to R and r. Ilence the poles, the projections of the equatol and ecliptic, together with those of the crcles of ight ascension and declination, will assume the following form, of which the visible half only is diawn.

Returning to a preceding illustration, if we were to suppose evely particle of ink lad upon this cube to sumk duect to the centre, leaving a dalk line to mark its progress, and if the sold weie then placed upon a lathe, with P and its opposite point p (not seen) for pivots
of otation, and then tunned into a sphere, the latter would be makked like a common globe as follows P and p would be the poles, $\mathrm{GH} \mathrm{H} h$ would leave the equator on the globe, and LM / m the ecliptic. VW $v w$ would become the equmoctial colure, and XYry the solstital colure The lines marked 1234 , which ane cucles on the lighes map, and parts of hyperbolas on the lateral maps, will all become cucles of declunation. Agan, 5 P 678 , and all similar sections of the cube, together with $\mathrm{CA} c a, \mathrm{D} B d b$, and $\mathrm{X} \mathrm{Y} x y$, $\mathrm{VW} v w$ alieady mentioned, will become cucles of right ascenston on horay cucles.

Befone supposug the maps to be sepaated, it will be convement to have some distuct name for each These at the top and bottom we shall call the north polar and south polar maps, fiom the poles which they contan. The letters at the coners of these will be ABCD and abcd. Each of the lateral maps contans one of the prucipal points of the ecliptic, fiom which it may take its name The denominations will theeefore be as follows

ABCD	Noith Polar Map
ABed	Vernal Equmov Map
BCa ${ }^{\text {a }}$	Summel Solstice Map
$\mathrm{CD} a b$	Autumnal Equmox Map
DAbc	Winter Solstice Map
abcd	South Polar Map

No difficulty will aise from our using lelters not seen in the dagram, if it be iecollected that the small letter conesponding to auy great letter is alivays on the point of the cube duectly opposite.

We should ecommend the reader to write the letters A, B, C, D, \&c., at the cornets of has maps The following dagram exhibits the whole six, separated, the mannet in which they are placed in the book beug shown loy the heading of each, which is witten at the top of the map. Those points on lines in which maps come togethen on the cube are denoted by the same letters, and to and the conception of the positions of different points on the maps, when the lutter are placed on the cube, a number is placed in eveny quarter of thice of the maps, and the same number is placed in the opposite quale of the opposite map for example, the quarter marked 9 in the winter solstice map, is opposite to the quarter malled 9 in the summer solslico map

The hinges by whuch the maps are connected will enable us to see hows the cube may be restored. Suppose them so small as not to

separate the edges of adjacent maps by any perceptible quantity; and let the whole system be supported at the point l^{3}. The four adjacent maps will then fall into the four sides of the cube, whech will he completed by bringing up the south polar map, and fixing it to that of the vernal equmox by the clasps shown in the diagram, The points of different maps which have the same letters will now have fallen together. Thus L on the vernal equnox map, will meed

L on the winter solstice map; and the points maked o on the veinal equinox, winter solstice, and south polar maps, will como together.

As we cannol here pretend to give a complete doctume of the sphere, we presume our reader to have the common knowledge of that subject, and shall endeavour, by applying all our explanations to the maps, and nol to the globe, to elucidate the former by those idens with which he is supposed to be famina on the latter

1. P, p. The noth and south poles, or points about which the dimal motion of the eath makes the heavens appen to turn. They are the only fixed points in the heavens. Any faed sta is always at the same distance from P . This distance, oi angle contaned between P and a star, is the not th polar distance of the latter.
2. The line $\mathrm{G} \mathrm{H}, \mathrm{H} g, g h_{\mathrm{s}} h \mathrm{G}$. The representation of the great encle called the equato, every point of which is equally distant fiom the north and south poles It is a square which divides the

cube into two hemi-cubes, each exactly liko the other. The angular distance at which a star is fiom the point neurest to it of the equator
is its rececination, which is north ol south, accordung as the stai is in the hemi-cube which contans the noth or south pole. The dechnation and polar distance together make up the distance between the pole aud the equator, which is 90° In the diagram of page 23, the north polar distance of S is the angle represented by $P S$; its declenation, which is noth, is the sum of the nugles represented by $\mathrm{T} a$ and $a \mathrm{~S}$ the noth polat distance of X is the sum of the angles representer by $\mathrm{P} b$ and $b \mathrm{X}$; ds declunation is that represented by ZXX. And Y has the south deuluation represented by V Y.

Declmation on the globe of the heavens answers to lututude on the globe of the eath, oi, as we must now call il for distunction, geographical lattude. Thus when a spectator sees a star dueclly over his head, he knows that the declunation of that star is the same as the latitude of his own postion. The reader may now find those stars which will in the couse of the day pass oven hus head, he leeng in London in latitude $51 \frac{1}{2}^{\circ}$. The polar distances of all such stans will theiefore be about $38 \frac{1}{2}^{\circ}$, and he will find among the most considerable of those which pass neally over hend, β and γ in Dinco, y and y in Ursa Minot, and α in Persens

3 The double line $\mathrm{L} \mathrm{M}, \mathrm{M} l, l m, m \mathrm{~L}$, is the representation of the celphetc, of the gieat cucle though which the sun appears to move in the counse of a year. It is represented on the cube by an ob long figue or rectangle, the shoter sides of which aue $n_{l} \mathrm{~L}$ and $\mathrm{M} l$ Its pmincpal points ne-

Sugn	At the flist point of	Position of the Sun	Name
∞	Aries	In the equator, and about to puss wito the northen leme sphure.	Vernal Jiqunux
σ	Cancer	At its gronfest distance nbovo the equator, and absout to doscend	Suminer Solstico.
\sim	Labra	In tho equator, and nbout to pers auto the southern hems spheru.	Autumual Equmox.
Ys	Capricornus	At ifs grentest distance bolow the wquator, and about to ascend.	Ninter Solslice.

The opposite points E, e, ate the poles of the ecliptic, that is, the points fiom which the stu always keeps the same distance 'The precession of the equuno es, ot the gradual change in the relative position of the celiptic and equator, cruses these poles to move slowly round in the duection contiany to that of the annual motion of the sun, completing a revolution in about twenty-six thousand years The equinoctial points or and \bumpeq theerfore move backwads, that is fiom H townds G, and fiom h towards g, at the ante of about 50 Tv" in a year Pioperly spealug, thetefone, these maps (and all others) become inconect in time, but owing to the smallness of the precession, it will be moie than a centuy bofore they are practically uselcss.
4 As yet we have only mentioned the distance of a star fiom the pole, of fiom the equator, ds a means of fixug its position. But a stan might move ound the pole, without changug its distance fiom it, and while it dad so would bo sad to change its sight ascension. The right uscension of a stan is the following Let a gieat cucle be diawn though the place of the stat, and though both the poles P and p Such a cicle is called the hou cucle of the stan In the figme of page 23, vanous hour cucles anc repiesented as they appear on the disjointed maps Any one may be found by leeping the same letter in view Each onc on the cube is a rectangle, and any one may be obtaned by cutting the cube by a plane which passes through the axis Those parts of the hom cucles which are found in the noth on south polar maps ane eqpesented by stanght Ines passing through P and p; those paits which are found on any of the other maps me lines parallel to two of the sides of the map. The ught ascension of the stan is the angle made by its houn cucle with that hour cucle which passes though the intersections of the equator and ecliptic, which points, called the Equmoxes, ate chosen as convement stations fiom which to measure, in the sume way as on the eath the mendian whuch passes through Gieenwich is adopted as a conventent beginnung for the measme of tenestual longitude Thas fist hour cucle is no other than the equinoctinal colure, so that the solstatal colune, which is at ught angles to the equiunoctial colue, has 90° of 1 git ascension.
It must, hoveven, be observed, that the purts of the same hour circles which he on different sides of the pole have ught ascen-
slons differing by 180° Thus though the pait of the solstitual colure which hes on the side P os has the uglit ascension of 90°, that which lies on the side P vi has the nght ascension of 270°. So that the ught ascension of a stai depends on which hall of the hour cricle it is found m, The cucles of nght ascension ano supposed to move with the stans, so as to heep then position relatively to the latter. If it weie not so, a star would have every possible right ascension in the cousse of the twenly-four hous,

The term right ascension answers to longlude on the teriestial globe, ot geographical longitude, in the same way as declination to latitude. Thus of the star a is on the meridan of Bealm at the moment when the star b is on that of Pars, the difference of the right ascensons of a and b is the same as the difference of longitude of Beilm and Paus, It is customay to measure ught ascension all round the globe, and not, as in measuing geogiaphical longitude, to divide the globe into two halves, one easl and the other west of the first mendian So that to make the globe of the henvens and eat th conespond in the methods of measumement, we ought to say that 1° west of Greenwich as 359° of longitude, always monsuming eastward till we come to the place the longitude of which is expressed.

The circle in the noith polat diagram, which is not on the ionl map, is that under the points of which the zenth of Gicenwich Obserpatory successively comes in the couse of the dumal motion. 'I'ho direction of the anows is that of the eal motion of the eath, to whols the apparent motion of the heavens is continiy. The hour cucle, in whel the zenth of Greenwich is found for the momont, is the meridian of Gieenwich at that instant.

On a globe, it is most convenuent to suppose the menidian fixed, and the hour circles to come successively under it, moving fiom enst to west. But on these maps, the different paits of the day are most easily represented by supposing the whole cube to reman fixcd, whie the mendian of Geeenvich successwely moves oven the hour carcles from west to east; the first supposition xopresenting the apparent motion of the stais to an observer who amagines humself fixed, while the second auses out of the real motion of the emilh.

The mendian of Greenwich goes sound the whole cube in twenty
four hours. In the same time it tales every possible ught ascension, or moves though 360° of ught ascension. This is at the rate of 15° to an hour, 15^{\prime} to a minute of time, nod $15^{\prime \prime}$ to a second of tume. Theie is some confusion ansing out of the use of the woids minute and second in two different senses. The chcle is dwived into 360 degrees, each degiee minto 60 minutes, and each munute into 60 seconds. The latten two ale called minutes and seconds of space-it should 1 athen be of angle. The division of the day need not be repeated, its minutes and seconds are called, for distunction, minutes and seconds of lime. The degiees, minutes, and seconds of space, are maked ${ }^{\circ}$ ' $"$; the hours, mmules, and seconds of lame, we malked h m.s.

Thus when we say that the star a Tami or Aldebann, on Jenuary 1 , 1830 , had the light ascension $4^{\prime \prime} 20^{\mathrm{mI}} 10^{\circ}$ of time, or $66^{\circ} 32^{\prime} 30^{\prime \prime}$ of space, we may verify the assention as follows

4 hous	answeis to 4×15 degiees on	60°	0^{\prime}	$0^{\prime \prime}$	
26 minules of time	-	26×15 minutes of space	6	30	0
10 seconds of time	.	10×15 seconds of space	0	2	30

$4^{14} 26^{m} 10^{\circ}$ of time
063230
We may regard the proposition as equivalent to ether of the following, in which it will immedrately be secognized by the reader: who has a clear notion of the teim ught ascension.

1. If we pass along the equator fiom the venal equanox, in the dnection of the sun's annual motion, we shall pass though $66^{\circ} 32^{\prime} 30^{\prime \prime}$ of the oquator before we come under the star Aldebaran, or before we seach the point from which we might travel on a great errele though Aldebram to the pole.
2. The angle whach the hour cucle of Aldcbaran, or the plane of that cucle, makes with tho plane of the equmoctial colure, is $66^{\circ} 32^{\prime} 30^{\prime \prime}$.
3. The meridan passes though the vernal equinox $4^{14} 26^{\text {an }} 10^{\mathrm{s}}$ before it passes though Aldebatan; 01, supposing the merdian fixed, Aldebaian conies upon the mondian $4^{\mathrm{n}} 26^{\mathrm{nr}} 10^{\mathrm{s}}$ aftor the venal equmox.

If instead of the equator we substitnte the ecliptic, and instend of the poles (by which word, when used alone, the poles of the equator
are intendel) we substitute the poles of the ecliptic, then the terms latifude and longilude are used instead of right ascension and declination. They should be called celestial latitude and longitude, to distinguish them from grographical latitude and longitude, with which they have no comexion. The following general explanation will apply to these and other terms. Let $A . B$ be any great circle on the globe, and let Q and q be its poles. Let S be a star, and draw

the great circle $\mathrm{QS} q$ passing through the star, and the poles of $A B$, culting $A B$ in y. Then the following table connects the names given to the arcs $A Y$ and $Y S$ with the various names that maty be given to $A B$.

A 13	Q	7	A	n	A Y	X 4
Equntor	North Pole	South Pole	Vernal Eapuinox	Antumant Equinox	RIght Asconslon	Declinntion
Sellptle	North loule of do,	South Poio of do.	to. tho,	do. do.	Longltude	Latlude
\therefore Horlan	Zonth .	Nadlr	North Point of Jorizon	Soain roint of do.	Arinuth	Altiusio

In the diagram of page 22 the dotted line which is partly in the north polar map and partly at the top of the adjacent mapes encloses that portion of the heavens which is alwnys visible at Greenwich; while the similarly dolted portion in the lower hemisphere cuts off that part which is never visible at Greenvich. The elevation of the pole above the horizon is always equal to the geographical latitude of the place of observation. Thus at Greenvich the angle made by tho lines drawn from the spectator to the pole and the point of the horizon directly lementh it, or the north point, is about $51^{1} 2^{\circ}$. Hence no star will set, unless its distance from the pole, or north polar distance, bo Whore than 51_{2}°. Similarly no star will rise unless its distance from the south pole be more than $51 \frac{1}{2}^{\circ}$,

The name given to the projection of the sphere which we have been descabing, is the gnomonic piojection It is peculanly adapled for the construction of sun-thals, on gnomons. A dial is made by erceling any opaque object, and manking ont the line along whech the edge of the shadow ought to fall at evely hou of the day, so that, by observing the shadow, the hou of the day may be obseived at the same ume. The opaque object has usually a rectinean edge, which thows a rectilinear shadow, levolving lound the base of the object with the sum, and the object is uswally called the style of the dial

If the style do not point towards the pole, there must be a different dial constucted for every different day of the year For though the sun is always on the same hom cucle at any one hour of the day, noon for example, he is on different paits of that hou cucle at different noons, in consequence of the motion to or fiom the equator, that is fiom or to the pole, which he has from his motion in the ecliptic Let O Pbe the duection of the axis of the heavens, and let the proposed dal be hormontal, the cucle A B iepresenting the spectator's horizon Then A and B being the noth and south points, APB is the spectator's mendian, in some part of which the sun must be at noon If the sun were to move up and down the arc PB, the shadow of a style diapn through O would change its diection, unless that style weie in the plane of the cucle BPA In this case it will always be in the duection $O A$, shortenng of lenghening, accordung as the sun moves up or down, but always forming patt of the line OA. Therefore, in ofder that noon may be alwnys denoted by one and the samo direction of the shadow, the slyle must be in the plane of the mentdum, or noon hour circle. Similaly, in ordet that one o'clock r.m. may be denoted by the same duection of the shadow, the style must be somewhere in the one o'clock hour ciccle, and so on. Therefore the dal which setves for one day will not serve for another, unless
the style be placed in some line which passes though all the hour circles. The only such line is the axis of the henvens, in the duectoon of which the style is therefore placed.
In the precedug figure we see the houn cucles for 10 and 11 o'clock in the forenoon. The duections of the shadows of $O P$ aid those houns, on the hoizontal dalal, are the lines opposite to O 10 and O Il, or those lues continued backwads The queston therefore of constucting a sum-dal on a given plane, is aeduced to the following If the point where the style meets the dial bo made the centio of the globe, in what points will the different hour cucles cut tho dal? This question is very easily solved on such maps as those wo me descubug, because alt the great cucles are represented by shaught lines, and all the houn cucles ane rendily diawn. If then, an in page 16 , we diaw the sectoon in which any plane passug though the centie cuts the cabe, and also lay down the points in which the representations of the hour cucles cut that section, we can, by joinug the centie of the sphere and cube with these points, and contunuring the several lues through the centie, find the duectuons of the shadows on that plane corresponding to the vaious houns of the day This would not be the best pactical method, but we have mentioned it as illustrative of the name given to the projection in question.
In the map of page 8, we observed the distonton, that is, we saus that lines which are of equal length on the globe, me not repiesented by equal length on the map. On our present maps thene is some distoition, but not much, mad that prineipally at the edges and corness. This may be seen by lookung at the noith and south polar maps, in which the distance between the cucles of declanation evidently increases as we proceed fiom the pole, these crrcles hemg separated by equal acs on the sphele. But in our projection, a line diawn fiom the centie of the map duffers fiom the auc which it iepresents by the same quantity, in whatevel drection it may be dinwn: that is, the distotion of lunes measured fiom the centie, is the sume mall drections. Thus in the north polar map, though Capella, or the star, α in Aunge and Deneb, or a in Cygnus, aie both farther from the pole than they would be in the globe which lies in-
the cube formed by the maps, yet beng both very vearly on same circle of declination, they will both recerve the same in. use of thein pola distance The following table will give an idea Ire progiessive inciease of the distorion as we approach the colof the map A globe is supposed of 10,000 inches radus, ot 300 mehes in drametes. The correspondurg cube will, therefore, e assde of 20,000 melhes A line is diawn fiom the cente of the $[$, of the number of degiees maked in the first column, on the ord is the length of the globulat anc repiesented by that line; on thud is the real length of that line on the map; while the fouth es the difference of the second and thud columns, or the distortion. e nearest moh is given, and fiactions of mohes me rejected.

No of De grices	Iength on the Globe	Length on D the Alup	Diferenes	No of D_{g} brecs	Larigth on the Clobe	Langth on Llc ATap	Dilference
5	873	875	2	35	6109	7002	803
10	1745	1763	18	40	6081	8301	1410
15	2618	2679	61	45	7854	10000	2146
20	3491	3640	140	50	8727	11918	3191
2)	4363	4663	300	55	9599	14281	4682
30	5236	5774	538	60	10172	17321	6849

Instend of supposing so lange a cube, we may imagine the half le of a map to bo diviled mino ton thousand parts, and the preced3 table will then apply to that map, the unt berag, not an moh, th the twenty-thousandth pant of the whole side of the map
Now if we suppose that in a ciowied design, composed of objects 1 which the eye is nol much used to dwell, (which temark is im\rightarrow tant, as what we here say would not hold of a preture of houses scenery,) the oye would not well estmate the length of any lme ithm about its sixth paut, the preceding distontion is immaterial xtll it amounts to about the sixth part of each lue that is seen. rom the abovo table it appeas that a lue dawn fiom the centre of se map, represening 40°, contans 8301 parts, of whech 1410 are ue to distontion. The latter is about the sixth part of the fomen ; ence we may conclude that for 40° every way fiom the cenlie of the zap, the latter is a good representation of the corresponding part of
the globe, so fal as simple appearances and linear distortion measured fiom the centre are concerned Indeed, in no part of the map is this distortion so considerable as to rendet it a bad representation of what is seen in the conespondng part of the heavens.
With eegad to angula distotion, theie is none in lines daawn fiom the centre of the map, that is, if though the centic of the map lines be darwn to two stais in it, the augle made by these lues is the same as that made by the planes of the cucles which they represent But two shagight heses diawn though any other pat of the map, make in some cases a smalle, in some cases a laiger, anglo than the corcles they repiesent. At the coiner of the map, the dulfeience amounts to 30°; so that the clucles bounding the part of a globe which falls into one of the maps in the daguam of page 19, make an angle of 120°, wheteas the lines which represent them make an angle of 90°, or a a ught angle

If we divide the half side of a map into ten pats, as in the phecedung daagiam, and descoube the squares theee drawn, the ught angles in the comers opposite to K nealy repiesent the followng angles on a globe, the squate called the fist bemg the smallest.

Fust	$90^{\circ}{ }^{19}$	Sixth	105° \%
Second	$92{ }^{\circ}{ }^{\text {\% }}$	Seventh	$109{ }^{\circ}{ }^{\text {a }}$
Third	$94^{\circ}{ }^{\text {¹0 }}$	Eighth	1.13°
Fourth	$97^{\circ}{ }^{\text {P0 }}$	Ninth	$116^{\circ}{ }_{18}{ }^{\text {g }}$
Fifth	$101{ }^{\circ}{ }^{\frac{3}{6}}$	Tenth	120°

The angula distortion is therefore a much mose considerable defect than the lueau distoition treated above, and must be recollected und allowed for in finding the stars in the henvens, by means of our projection. For example, lookng at the north pola map, it would appear that lines drawn though the star α in Cygnus to $\gamma \mathrm{m}$

Diaco and $\beta_{\text {in }}$ Cassiopera, are as nearly as possible at ight angles. On the heavens, however, these lines will appear at an angle sensibly gienter than a a ight angle.
We will close thus chapter by a remark on the general appearance of the heavens. When we turn the eyes round, we cannot avoud the umpression of being in the centie, we will not say exactly of a sphete, but of a iounded vault, compressed towads the top When, however, we look at a small part of this vault, such as can be taken in at a fixed glance, we see nothing but the appeatance of a flat surfice, whuch, by the common uules of perspective, should be repiesented by a pait of such a map as we have been descubing, the centre of whech is in the point to whuck the eye is most mmediately duectel. The best points, theiefore, on which to begn the study of the heavens from our projection, so far as thacing iesemblances is concerned, are the centies of the different maps, or pomts near to them The following stans will be near enough to those points for the purpose.

CEAPTER II.

Wr shall now proceed to such astronomical details as will enable the reader to adapt the map to the heavens at any hour of any day

In all that follows, we shall suppose the spectator situated at the Observatory of Greenwich, the astionomical capital of EAngland, as well on account of the constant allusion made to that place in works on the subject, as for the convemence of reforence to the Nantical Almanac, which is calculated for the meridian of Gieenwich 'The general appearances of the henvens (telescopos and graduated instruments apart) will be the same in all pats of the United Kingdom, with this exception, that a few low sturs, which rise but hitlo above the hormon at the Land's Eud, will not be seen in the nol lhem parts of the island. The utmost difference in the meridian altiludes of the same star will be about eight degrees-about as much as the distance between the two lower stars of Charles's IWain (β nad γ of Ursa Major), and the utmost difference between the times of the same star passing the meridtan of the mosi eastenly and westenly ponts of the Unted Kingdom, will be about forty-five minutos

The durnal motion of the earth, which is fiom west to easl, or int the same order as the signs of the zodiac, carries the meridian of Geenwich with it The piart of this mendian which is on the notll and south polar maps is, as nlearly sthted, a sta aight line passing through the pole, and which moves round the map in the ditection in whach the degrees and hours aue witten at the edges. The parts of the meridan whoh lie in the ecliptic maps are straight lines perpendicula to the equator, and the daly motion of the meridian will therefore be represented on these majps by a stianght line moving parallel to itself and the sides of the cube, over four faces successively, fiom right to left of each This will be more clealy seen in the figure of page 20, and the daly course of the zenth of Greenwich is marked by the curcle in the noth pola map of the figute of page 22 The difference between the method of using a common globe and our maps is this: in the globes, the meridian is fixed, and the appearances of the durnal motion are represented
by tunarig the globe under the merulian fiom cast to west: in tho maps, it is the real motion of the mendinn fiom west to east which is supposed to take place; so that instend of talking of a stai comeng upon the merichan, wo ought to speak of the meidian anruing at ustar, of if we speak of the sun ol any plamet which is in monon, we should say that the mendan overtakes the planet
'To supply somethug analogous to the merclian on a common globe, believing that such illustiations ate always useful, we describe the following appautas

Retarning to the figue of page 20, let two pins project fiom the poles 3 and p (nol scen) The firme 1234 has ats sades 12 and 34 a littlo longer than $B D$, but 13 and 24 equal to D or $A c$ The interion sules 56 and 98 ne moveable in grooves cut in 12 and 34 , and are repelled fiom 13 and 24 by the spungs 11 and 12 , by which they would be duven thll they meet, were no resistance interposed This fume is placed upon the cube, page 20, the pins at P and p passung though holes at 9 and 10 , so that when the frame is moved round in the dinection $A B C D$, the force of the spungs always keeps 56 and 78 close to the cube Thus 5678 will always represent the moudan, 57 and 68 being on the noith and south polar maps, and 56 and 78 on tivo opposte ecliplic maps

The diy is a genetal tem for the complete time of revolution of the menilian liom any body, fixed or moveable, to the same body aguin. The days in common use among astionomers are the following '-
J. The sidereal day, of time of the earth's revolution, so that any fored star which was on the meridian at the begmong of this day, is again on the meidian the end. Instead of dating fiom any patLucular star, it is customary to begin fiom the tame when the mendian is on the equnoctial pont of Aries, or the intersection of the ecliptic
with the equator, marked ∞, and from thence to count, not two periods of 12 hours, but one only of 24 hours. Thus p. 20, when the meridian is within 15° of φ, it is 23 hours sidereal time ; when the meridian has passed the equinoctial point α, by 15°, it is one hour sidereal time.
2. The real solar day. In this case the stua is the body from which the day derives its name, the latter being the period elapsed between two successive times when the meridian overtakes the sun's centre, or two real noons. It begins when the meridian passes through the sun, and is a little longer than the sidereal day, because since the sun is also slowly moving forward at about the 365th part of the rate at which the meridian moves, the latter must not only complete the circuit of the heavens, but must also overtake the sum.
The real solar days are not precisely equal in length all the year round; for the daily motion of the sun is not the same throughout the year, being more than 61^{\prime} of longitude at the beginning of tho year, when it is greatest, and less than 58^{\prime} at the beginning of June, when it is lenst.
3. The mean solar day. To avoid the inequality above alluded to, a fictitious sum has been supposed to move, not in tho ecliptic, but in the equator, which setting out wilh the real sun, when the latter is at φ, proceeds uniformly along the equator so as to arrive ngain at T when the real sun is there agnin. The mean solar day is the interval between two successive passages of the meridian over this fictitious body, and is longer than the sidereal day for the same renson as before. The difference of the two may be ensily calctulated: It is found that the year (or revolution of the suur) is $365 \ddagger$ menn solar days, and there must be one more sidereal revolution in that time than there are mean solar days, because in turning the sidereal into solar revolutions, there must be one whole revolution of the former broken up and wasted, so to speak, in making up the daily differences between the solar and sidereal revolution. A more familiar illustration may be found in the hands of a watch. If we call the complete rotation of the minute haud an hour, ns usual, and the time between two conjunctions of the minute und hour hand by any other name, say a period, then twelve hours will be as long as eleven periods, and in that time, one hour will; altogether,
be employed by the minute hand in making up the differences between hours and penods. Consequently, a penod exceeds an hour by the eleventh part of an hour Apply the same pronciple, and divide a mean solar day, o1 24 hours, 2 e. 1440 minutes, by 365 , ne have a little less than 4 mean solat minutes for the excess of the mean solar abose the stereal day. More conectly-

Mean solat day $=24^{\mathrm{h}} \quad 3^{\mathrm{m}} 56^{\mathrm{s}}, 6$ sidereal tume
Sudeteal day $=23^{\mathrm{h}} 56^{\mathrm{m}}$ 4, 1 mean solat tume.
The distunction of day and might is unknown in astionomical reckonug. The mean solar day begms when the mendan overtahes the fictitious sum in the equator, whech moment is $0^{14} 0^{\mathrm{m}} 0 \mathrm{~m}$ man sola time The civil and astionomical reckonings then agiee till midnght, wheh is 12^{n} in both, but one o'clock the succeedug moining (civil reckoning), is 13^{h} mean solar tume (astionomical neckonug), eight in the morning is 20^{4}, astionomical seckonng. Consequently, six o'clock on Sunday moining, is 18^{11} of the day which commenced on Satuday at noon. The following examples will illustuate this -

Civil Rechonung	Astomomkal Reckonug
May 1, noon	May l, $0^{\text {h }} 0^{\text {ma }} 0^{3}$
Sept. 17, 6 А.m.	Sept. 16, $18^{10} 0^{\mathrm{m}} 0^{\text {s }}$
	Dec 31, $233^{\mathrm{hr}} 0^{\mathrm{mm}} 0^{3}$
Aug, 12, 9 г.m.	人ug 12, $9^{\text {h }} 0^{\mathrm{m}} 0^{\mathrm{m}}$

The cause of the difference between the mean and cenl solat day is two-fold. fust, the ieal sun moves megulaly, which the fictitious sun is not supposed to do, secondly, the real sun moves in the eclipher, and the fictitious sun in the equator. Eyen if the real sun moved anformly in the eclipic, the meridan would not be on the real and fichtions sun at the same tume, as will be evilent on looklug, for evample, at the reinal equnos map. Suppose the real and fictitious suns each to have mored though 30°, in which case the former will be at 8 on the echptic, and the latter at 30° on tho equator; but the meridinn must move though more than two degiees from the latter before it overtakes (ou falls undei) the fomer. The equation of lume is the quantity of mean solat time in which the mendian moves from the ieal to the fictitious, of fiom the fictitious to the eenl sun, according to wheh is the foremost it is given for every day at noon in the Nantical Almanac. It may,
howevel, be observed, that the difference between the two is ratoly so gient as to be of importanco in questions for which these maps may be made useful.
We proceed now to the actual employment of the maps,
The following table will show at a glance w what map to look for any point whose nght ascension and dechnation are given.
Opposite to each map is the whole range of aught ascension contaned in it, the numenals sigufyng degiees, the Roman figues hours, and undemeath, ma a line marked 'Limit of Decluation,' is the gieatest declination which must be looked for in the houn cucles where ught ascensions ane above All ponts having higher declunations, must be sought in the noth on south pola maps, according as the declination is not th or south Foi mstance, in what map is the star whose ught ascension is $16^{\mathrm{h}} 56^{\mathrm{m}}$, and decluation $44^{\circ} 19^{\prime}$ south? Recollect that 20 manutes of ught ascension is 5 degrees. We find $16^{\text {h }}$ in the winter solstice map, and muder $1^{7 / 4}$ (the nearest to $\left.16^{\prime \prime} 56^{m}\right)$ we find $44^{\circ} 0^{\prime}$, as the limit of declination. We must, thenefore, look for the stan in the south polat map. If the declination be upwaids of 45°, not th or south, the star is certauly in the conespoudng polau map
The method of laying down a star oo planet, when its nght ascenston and declnation are known, hatdly needs explanation. If the dechuation be so great, that the stan must be in one of the polan maps, look for the ught ascension on the edge of the map, and having found it, proceed along the staught line dawn fiom the pait of the edge just found, untul you come to the cacle of declunation of the star, which may be found by looking at the dagonals of the square, on which the declunations aue maked. If the star be on one of the ecliptic maps, the right ascension must be looked fon on the equator, or on the upper or lowes edge, and the deglination on etther side.
The positions of the sun, moon, and planets, for evely day in the year, may be found in the "Nautical Almanac," which work will ho necessuny to all who make much use of the maps Of the sum, the lougitude only need be found, which must be looked for on the eclptic. The places of the planets may be taken fiom the same woik, either as seen fiom the earth, or from the sun For the first, the geocentric right ascensions and declimations must be taken; fot the second,

$\begin{aligned} & \text { Vernal Equinox } \\ & \text { Map. } \end{aligned}$	$\begin{aligned} & 315320325 \\ & \text { xxi. } \end{aligned}$	$\begin{aligned} & 330 \\ & \times \times \pi I \end{aligned}$	335340	$\begin{gathered} 345 \\ x \times 1 I I . \end{gathered}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			${ }_{1}^{15}$	$20 \quad 2$	$\begin{aligned} & 30 \\ & \text { rr. } \end{aligned}$			45
Summer Solstice Map.	$\begin{array}{lll} 45 & 50 & 55 \\ \text { miI. } \end{array}$	$\begin{aligned} & 60 \\ & \text { ry. } \end{aligned}$	$65 \quad 70$	$\begin{aligned} & 75 \\ & \mathrm{v} . \end{aligned}$			$\begin{aligned} & 90 \\ & \text { v. } \end{aligned}$	95	100	${ }_{\text {viri. }}^{105}$		${ }_{\text {trir. }}$			$\begin{aligned} & 135 \\ & 1 x . \end{aligned}$
Autumnal Equinox	$\begin{aligned} & 135140 \\ & \text { Ix. } \end{aligned}$	$\begin{aligned} & 150 \\ & \mathrm{x} . \end{aligned}$	L55 160			175	$\begin{gathered} 180 \\ \mathrm{xIf} \end{gathered}$	185	90	$\begin{aligned} & 195 \\ & \times \times 11 \end{aligned}$	205	$\begin{aligned} & 210 \\ & \mathrm{xyv} \end{aligned}$			225.
Winter Solstice Map.	$\begin{aligned} & 225230235 \\ & \text { xv. } \end{aligned}$	$\begin{gathered} 240 \\ \text { anr. } \end{gathered}$	250	$\begin{aligned} & 2555 \\ & \text { xviI } \end{aligned}$			$\begin{gathered} 270 \\ \text { xviIr } \end{gathered}$	275		$\begin{aligned} & 285 \\ & \text { xix. } \end{aligned}$	295	$\begin{aligned} & 300 \\ & x x \end{aligned}$			315 xxr
Limit of Declnation.	$\begin{array}{lll} 35^{\circ} & 37^{\circ} & 39^{\circ} \\ 16^{\prime} & 27^{\prime} & 19^{\prime} \end{array}$	$\begin{aligned} & 3^{\circ} 40^{\circ} \\ & y^{\prime} \\ & 54^{\prime} \end{aligned}$	$\begin{aligned} & 42^{\circ} 43^{\circ} \\ & 1 I^{\prime} \\ & 13^{\prime} \end{aligned}$	44°	$\begin{aligned} & 44^{\circ} \\ & 34^{\prime} \end{aligned}$		${ }^{45}$	54^{\prime}	44° $3 \pm$	44° 0^{\prime}	$\begin{aligned} & 43^{\circ} \\ & 13^{\prime} \\ & \hline 2^{\prime} \end{aligned}$	54	$\begin{aligned} & 39^{\circ} \\ & 19^{\circ} \end{aligned}$	+ 27^{\prime}	$16^{35^{\circ}}$

the heliocentio. The onbit of any planet may be found with sufficrent neaness by laying down two positions of the planet in the same map, and diawing a line though the two. This may be contonued on the othel maps by the methods explaned in p. 15 and 16 .

The tume at whuch any part of the heavens comes on the mendur. at Greenwich, may be found from the same work by means of the column headed " mean tume of hanstt of the first point of Aues" (page 22 of each month). 'To the time at which the equmor passes the meitian, as thus found, add the ught ascension of a sta in time, and the iesult will be (conectly enough) the time of transil of that stan But of the sumexceed twenty-fout hours, subtract twentyfour hous, and the semandet is the time of tansit. The day begins fiom noon, as explaned in page 37 .

For asceitaining phenomena with a less degiee of precison, but sufficient for the puposes of amusement ot elementay mstitiction, the following table will be sufficient, in which the sun's longitude at noon is given for every ten days within a quater of a degiee, mod the ught ascension within a munule

Longtude and Rught Ascension of the Sun at Noon.

Jan.	$\begin{aligned} & \text { Mur } \\ & 280 \\ & \hline 1 \end{aligned}$	$\begin{array}{cc} \mathrm{Hrg} & \mathrm{Mns} \\ 18 & 46 \end{array}$	July 10	$\begin{array}{\|l\|l\|l\|} \hline \mathrm{Deg}_{2} & \text { Qu } \\ 107 & 3 \end{array}$	$\left\lvert\, \begin{array}{cc} \text { Hrs } & \text { Mns } \\ 7 & 17 \end{array}\right.$
	290	$10 \quad 30$	20	117	$7 \quad 57$
21	3010	$20 \quad 13$	30	1263	37
	3111	$20 \quad 55$	Aug.	136	915
Fob.	32	$21 \quad 35$	19	146	963
	3312	$22 \quad 14$	29	155	$10 \quad 30$
March	2	$22 \quad 52$	Scpt	165	11
	3512	$23 \quad 29$	18	175	42
	2	5	28	181	1218
Apnl	111	41	Oct 8	19.1	$12 \quad 64$
	21	18	18	204	13 31
	310	55	28	2112	140
May	402	233	Nov. 7	2213	1140
	50	311	17	2313	$15 \quad 29$
	600	$3 \mathrm{5l}$	27	2413	1611
	692	431	Dec. 7	2550	$16 \quad 55$
Juno	79 0		17	265	$17 \quad 39$
	882	$5 \quad 54$	27	2751	1823
	981	6 3s			

The degrees of longitude are laud down on the ecliptic, and thus we may find the position of the mendian at noon, and, what is of more importance for out present purpose, at mudmght, for half a degiee added to the sun's longitude at noon, will give the longitude at midngght sufficiently near, and 180° arded to the longitude, or subtincted fiom it if it be gieater than 180°, will give the longitude of that pome of the echptic which is opposite to the sun at mudnght, on whech is then visible IIaving found this point, take notuce what conspuctous stass are on, or nealy on, the mendian

The degiees on the ecliptic are comuted by thinties, each 30° beng a sugn of the odrac The followng table shows the degiee of longitode at the begimnong of each sign, and the symbol by which it is denoted. The astronomical sigu must not be confounded with the consicllution, for a acason which we shall after watds see.

Astronomical nemo of the alyn	S) minoi	Degree of I ongitude at the commence. ment of the Blgn	Mnp in which the com mencement of the sigu is to be found
Nues	$\boldsymbol{\gamma}$	0	Venal Equnox
Taurus	8	30	" "
Geminı	[60	Summel Solstice
Cancer	■	90	" "
Leo	Ω	120	" "
Virgo	114	150	Autumal Equinox
Libia	n	180	" "
Scorpio	11	210	" "
Sagitianus	\pm	240	Wenter Solstice
Capricornus	Y	270	" 1
Aquarils	然	300	" "
Piscrs	x	330	Veinal Equinox

For evanple, requied the state of the heavens at modnght, on the 1st of Januay. The sun's longitude is half a degiee more than $280 \frac{3}{4}^{\circ}$, or $28 \frac{1}{1}^{\circ}$ Subtiactung 180° fiom this, we have 1011°, the longitude of the point of the ecliptic, whech is on the visible part of the meudian at midnght. This point is 111° past the fist point of Cancel, maked oo in the summer solstice map. Finding this pount, we see that the visible pant of the meridan towads the south, has at mudught, Januay 1 st, a little more than 102° of ught ascenson, of in the mose common phaseology, the hour-circle of 102
is nearly on the meidhan. 'The constellations Cams Major and Gemin are on it, and the bught star of the forme, Suris, has been passed by the mendian, or has appeared to closs the mendian about ten minutes before midnight. Oion is to the westwatd, the belt having passed the mendans at about a quater to eleven o'clock, Polluy, one of the puncipal stars in Gemm, will be overtaken by the mendian, or will appear to cross it, in aboul 50 mmutes. Looking to the noth pola map, in which the conlonuathon of the metudan is a lme neanly close to the adius diawn fiom 102° to the pole, we fand Lynx and Camelopardus on the mendan, but no remakable star The Greal Beat is in the east, and Cassiopera in the west Very low down, between the noth and northwest, is the bright stat in Cygaus, whale low in the not the the stars in the head of the Diagon If we want the position of the heavens at eight o'clock the same evenng, on foun hours before midnght, we must put the meisdan back foun times 15°, ol 60°, whech gives it a lutle more than 42° of ught ascension Place the vernal equinox and summer solstice maps side by side, the former on the sight, and look at the hou-cucle of 42° We see the bught star Menkm, in the whale, just coming on the mendian, the head of Anes passes about fifty minutes before eight, and the Pletades will pass aboul nine, P M.

Looking at the noth polar map, we find Algol in the head of Medusa just past the mendan, where Capella will be in two hours, and Andromeda was two hous ago The Great Bear has passed the meridian below, or on the north side of, the pole, aboul three hours

The visible pait of the moidean is determined in the nothein hemisphete as follows. Measuie fiom the pole, on the north side, the latitude of the place, which guves the nouthern point of the horim zon, measue from the equator torunds the south, the angle by which the latitude of the place fulls short of 90°, which gives the south point of the horizon.
Resuming the first of the preceding examples, the latitude of Greenwich beng 51°, we find the bright stan $\&$ in Lyia, very nealy att the north point of the horizon at midaight, January 1 . Ac or naar the south point of the hoison, theie is no remankable star, but a in Canis Minol is about 10° above it.

The whole heavens may be divided into three poitions, withiegard to any place of observation - 1 , a poition whach is never below the houzon; 2. a poition whel never uses above the horizon; 3, a portion which nises and sets

Since the pole is always elevaled above the hombon by an anc equal to the latitude of the place, a small cacle diawn tound the pole, and distant fom it at evely point, by the latitude of the place, will contan the circumpolar pola of the hearens, as it is called, which is visible thonghout the whole of the twenty-fou hous All stans contanert in this aue called cucumpolar stans Sumilaly, sunce the other pole (that is in oun hemisphese, the south pole) is depressed below the honzon by an atc, equal to the latitude of the place, acicle equal to the former diawn ound the south pole contams a pail of the heavens which never uses, equal in magntucle to that which never sets. The alale, in the nothem hemispherc, for deter-. minng whether a stat falls in ether of these portions, is; -uf tha declmation of the sta be greater than the complemenl* of the latitude of the place, (for Gieenwich this is $38^{\circ} 31^{\prime}$, the Iatitude being $51^{\circ} 20^{\prime}$, it never sets if the declanation he north, of never uses if the declination be sonth

The remaning pait of the spheie, contaiming every point which has less dechnation (noith or south) than the complement of tho latitude of the place, 1 ses and sets alternately.
looking at our maps, we find that the cucumpola portion at Gieenwich meludes the whole of the north pola map, with the exception of very small segments at the comers, contammg no lange shar. It also meludes fou small poitions of the echptic maps, as previously descibed in page 28. Also, the portion which never lises at Giepnwich contams the whole of the south polar map, the conens only excepted, and fou similas southern portons of the ecliptue maps.

Ou maps (and indeed all others) anc very ill suted to determine the actual tume of using or setling of any stai. The best instru ment for this pupose, is a plamsphere hereafter to he noticed, whule

[^4]the correct method of ascettaining any such point must be left for those who ate acquanted with sphencal tigonometiy We gue here a rough table of the times at which some of the most iemait－ able stars，visible at Gieenwich，come unon the menidum of that place，for the finst day of every month．Where the star is cucumpolat，the metidan passage chosen is that south of the pole．A few stats of infentor magntules ate added in the case where a remakable constellation has no star of the finst maruitude．

Letter and Cons stellatlon Name	Jan	Ceb	March	Aprll	Mny	June	Juls	Angust
－Cassoppem	53	d3	2	\％114	＊ 98	＊78	＊ 6 星	＊39
a Aucts	74	51	31	$1 \frac{1}{4}$	＊ 11	－ 91	＊74	\cdots 时
a Cets Menke	81	64	18	24	$12 \frac{1}{4}$	＊ $10 \frac{1}{4}$	＊ 84	$\cdots 61$
a Perser	81	615	$4{ }^{4}$	212	$12 \frac{1}{2}$	＊10t	＊ 81	＊ 68
a Taurr Aldebaran	98	78	5भ，	3 \％	13	＊119	＊93	＊ $7 \frac{3}{4}$
a Aurigmo Capella	101	$8 \pm$	$6 \frac{1}{2}$	42	21	122	＊10¢	＊87
\propto Orioms Betelgeux	11	9	7 F	6	3	1	＊11	＊ 9
－Canis Miny，Surms	＊ 12	10	8	6	4	2	12	＊10
a Cams Min Procyon	＊129	109	89	63	4	21	124	＊109
β Quminorum Pollux	＊127	108	9	7	5	3	1	＊11
$\alpha \mathrm{IH}_{3} \mathrm{drm}$ Cor Ifjurm	＊2t	＊124	109	83	6 ${ }^{\text {a }}$	4	21	123
${ }_{\text {a Leonas }}$ Regrulus	＊31	＊11	$11 \frac{1}{2}$	91	74	如	31	$1 \pm$
\ldots Ursom May，Dubhe	＊ 41	＊ 21	＊12 ${ }^{1}$	104	87	6	41	21
aVirgums Sprea Virgum	＊612	＊ 42	＊ 2 本	＊121	102	83	6.1	412
a Bootis Arcturus	＊ $7 \frac{1}{3}$	＊5 $\frac{1}{2}$	＊3 ${ }^{\text {a }}$	＊ $1 \frac{1}{2}$	113	91	71	匆
${ }_{4}$ Serpentis	＊ 8 星	＊ 09	＊ 5	＊ 3	＊ 1	11	0	7
a Scorpu Antares	＊ 91	＊ 72	＊ 59	＊ 39	＊ 19	118	09	$7{ }^{3}$
«Ophuclu Ros Alhngus	＊109	＊89	＊ 61	－ 13	＊ 29	${ }^{*} 323$	104	$8 \frac{8}{2}$
γ Dracoms	＊11	＊ 91	＊73	＊5 ${ }^{\text {a }}$	＊3t	＊1才	11年	04
a Lyrmorega	${ }^{*} 113$	＊ 9 9	＊ 8	＊ 67	＊ 38	＊ 14	113	99
a Aquim Atar	1	＊11	＊ 91	＊ 7	＊ 5	＊ 3	＊ 1	11
a Cygni Dent	1星	＊11釈	＊10	＊ 8	＊ 6	＊ 4	＊ 2	＊12
＊Cepher Allerama	$2 \frac{1}{2}$	$12\}$	＊103	＊ $8 \frac{1}{3}$	＊6\％	＊42	－ 212	＊ $12 \frac{1}{2}$
a．Aquarı	34	14	\＃11 $1 \frac{1}{4}$	＊ 07	＊71	＊ 61	＊31	＊ 11
＊Piscis Aust，Fomalhaut	4	2	121	＊102	＊8f	＊ 61	＊ 47	＊ $2+$
«Pegast Markals	44	$2{ }^{2}$	12才	＊104	＊81	$\cdots 0 \frac{1}{4}$	＊42	＊ 24
－Andromedo 4ipheratz	51	31	11 ${ }^{2}$	＊11	＊91	＊ 71	－ 54	＊ 31

Letter and Con Name stellatlon	Sept	Oct	Nov	Des	Flme bctween rising and coming to the meridisin	Polnt of tho henvens in whtelat risey
\propto Cassiopena	＊1 $\frac{8}{6}$	11星	$0{ }^{3}$	73	－	一
a Arietis	＊31	＊It	111	91	81	N E6．E
a Colt Men／a	＊ $4 \frac{1}{1}$	＊ 21	＊ $12 \frac{1}{1}$	$10 \frac{1}{4}$	$6 \frac{1}{3}$	1 H
a Perser	＊di ${ }^{\text {d }}$	\％ 23	＊ $12 \frac{1}{2}$	1012	－	－
«T＇aun Aldebaran	＊ 5 \％	＊ 37	＊ 14	118	71	W，N C
a Antigoo Capulla	＊ 61	＊41	＂ 21	${ }^{*} 121$	－	－
«Orionss Detelyeus	＊ 7	＊ 5	＊ 3	$\checkmark 1$	61	Eb N
	＊ 8	＊ 6	＊ 4	＊ 2	4星	TSS．
«Cama Mm Procyon	＊ 89	＊63	＊ $4 \frac{3}{4}$	＊ 27	6131	TbN
β Gomanorum P＇ollux	＊ 83	＊ 7	＊ $1 \frac{7}{1}$	${ }^{4} 3$	0	NE l N，
a IIjchar Gon IIydra	＊101	＊ 83	＊ 61	－ 41	$5 \frac{1}{3}$	Lb，S
a Lemis Regulus	＊111	＊ 91	＊ $7 t$	＊6t	71	
a Uism Mnj Dubhe	124	${ }^{*} 107$	＊ 81	＊6，${ }^{2}$	－	\cdots
\＆Vrrgins Spica Virginis	21	121	＊10t	${ }_{*}^{*} 81$	51	JbS
a Lhoolis Arcturus	$3 \frac{1}{3}$	1）	＊11发	＊93	73	N b 6 F
a Souperais	47	3	1293	＊11	$0 \frac{1}{2}$	ThN。
« Scorpar Antans	$5 \frac{1}{2}$	39	112	＊113	312	S \mathbf{N}
«Oplunclıı ITas Alhatus	64	$4{ }^{2}$	29	12.	71	13，N P\％
γ Draconts	73	54	31	17	－	m
a Lajrmo Fega	$7{ }^{3}$	$0 \frac{1}{4}$	$3{ }^{3}$	$1 \frac{8}{2}$	－	\cdots
－Arıulm Alur	9	7	5	3	$0{ }^{3}$	EbN．
a Cugne Deneb	93	8	63	4	－	－
a Ceplies Alder n mm	1024	83	$6{ }_{2}$	41	－	\cdots
a Aquaris－	111	91	71	61	6	3
a Pisels Aust，Tiomaliaut	＊12	101	8	61	$21 /$	SEbS．
a Pegast Marknh	＊ 121	101	81	61	74	FNTH
a Andromudso Alpheratz	＊17	$11 \frac{1}{1}$	04	74	$8{ }^{\text {a }}$	NT

The finst column contans the usual method of namung the star， by its constellation and letter The second contans the pecultan name of the star，whene it has one，but when the name is seldom if ever used，it is put in italics：thus α Lyree is hardly ever colled Vega，while a Cams Majous is usually called Sums．The succeed－ ing twelve columns show，within abput a quartes of an how，the tumes when the various stars will be on the meridan of Geernwich on the firsl day of the vanous months of the year．The astensle denotes midnight or after midnight，the figure without asterisks
noon or aften noon Thus (*12) is midnighl, and (12) is noon ; (*2腬) is a quater to three in the mornng, ($2 \frac{1}{k}$) the same in the afternoon; (${ }^{*} 10$) is ten in the morning, (10) ten in the evenng. The last column but one shows the mterval of tume between the star's rising and coming on the mendian, of between the lattor and ats settung; and the last column shows neal which point of the compass it uses; whle the substitution of W. for E. thoonghoul will show the same for the setting Wheie the last two columus are vacant, the stal is cucumpola, that is, not sufficiently distant from the pole to rise or set

For mstance, we wish to know the position of the constellation Onon on the list of Mach Opposite to a Orions, and under March, we find (74), or this star comes on the mendan at about a quater past seven in the evening. In the last column but one, we see $6 \frac{1}{2}$, o1 the stru has nisen sux hours and a hall befoie it comes on the mendian, and will set six houns and a half after comug to the meidinn. That is, it lose at about a quarter to one, P.m, and will set at about a quanter to two, a,m. It arges east by north, and sets west by north *
To correct the preceding table for the intermedate days, abato a quarter of an hour for every four days fiom the finst of the month. Thus on the 18 th of December, seventeen days fiom the thist, the stas will bo on the merdian about an hour ealier than the tume marked in the table for the first. Thus the leaner may julge in what part of the heavens to look for any iemakable constellation at any tume of the year; aud may find the smallea stans by mone patculal comparison of the map wilh the postion of the heavens so found

The most isseful problem for which our maps offer no great facilitres, is the finding of the distance between two stans But when

[^5]the right ascensions and declinations of the stars are known, a simple geometıcal constiuction will overcome the difficulty, which we insert mose readily, as the same may also be appled to the finding of the distance between two given places on the eath's sulface

Of the two methods which we now give, the first is the constnincthon of a poblem in spherical tigonometiy, is independent of the map, and is meant to be apphed when the stans the distance of which is to be measured, le upon different maps. It is taken fiom Sir Jonas Moore's system of mathematics, and iequines only a scale or table of choids. The second method is conveniently applied when the stars ate upon the same map, and requites only a scale of equal paits

To find the distance between two stars, proceed as follows -

1. Find the right ascensions and dechnations of the stans
Cnse First Case Second,

1st stan R A. 358° Dec 571° N. 1st staı R.A 941_{2}° Dec $16^{\circ} \mathrm{N}$ $2 d$ stal R.A. 3071° Dec. $441^{\circ} \mathrm{N}$. 2d staı R A 344° Dec $30 \frac{1}{2}^{\circ} \mathrm{S}$,

2 Take the difference of the ught ascensious; or if this difference be gieater than 180°, subtiact it from 360°, and take the remander. Call this A.

$$
\Lambda=50 d^{a} \quad A=1101_{2}^{\circ}
$$

3. If the dechnations be both north, oi both south, subtiact both fiom 90°; if one be noth and the other south, add ether to 90° and subtract the othei from 90°. Call the results B and C.

$$
\begin{array}{ll}
\mathrm{B}=32_{2}^{\circ} & \mathrm{B}=106^{\circ} \\
\mathrm{C}=45 \frac{3}{4} & \mathrm{C}=59 h
\end{array}
$$

4. Take a curcle whose radus the chord of 60°, and fiom the centie O dave any radus O X

5. Set off XY with the chord either of B or C , and $\mathrm{Y} \mathrm{D}, \mathrm{Y} \mathrm{D}^{\prime}$ with the chord of the other.
6. Set off DS, D S', with the chord of A.
7. Draw O D, D D', S S'.
8. From M the intersection of $O D$ and $S S^{\prime}$, draw $M P$ perpendidicular upon $D \mathrm{D}^{\prime}$: from P draw PQ perpendicular upon OX or O X produced, and produce PQ to meet the circle in R .
9. Mensure XR with the compasses, and find the angle of which it is the chord; that angle is the distance of the stars required.

The answer in the first case is $33 \frac{1}{2}^{\circ}$, and in the second $1153^{3^{\circ}}$.
To apply this to finding the distance between two places on the earth, use longitudes instead of right ascensions, latitudes instend of declinations, but take the difference of longitudes for Λ, only when both are east or both west, and their sum when one is east and the other west. In all other respects, the rules are precisely the sume. When the angular distance is found, allow 70 miles to a degree, and subtract from the result, its hundreth part, which will be sufficiently exact.

The second method of finding the angular distance of two stars is as follows: :-

Let P and Q be the stars, K the centre of the map, and $D V$ a halC-
side. Sct of $\mathrm{D} p, \mathrm{D} q$, despectively equal to KP and K Q , and draw $\mathrm{V} p, \mathrm{~V} q$. On $P Q$, or on a line $M \mathrm{~N}$, equal to PQ , constiuct a triangle, of which the remaung sides RM, RN, are respectively equal to $\mathrm{V} p, \mathrm{~V} q$ Then the angle at R is the angula distance of the stans P and Q on the globe
If the side of the map be constdered too lage a scale, any consement length may be taken to represent an mech, and a scale of equal pats may be used

CHAPPER III

We now proceed to some histoncal and citical account of the gnomontc piojection.
It has been usual to distmgush maps of the stans fiom those of the earth, by the name of plarrspheres, or representations of the sphese upon a plane This namo is iejected because both species equally ment the latter title. The finst planisphenes of which we have any distinct account aie those of Ptolemy, ot ather of Ilyppachus and Ptolemy It appeas that the formes lenew the slercographec pojectoon, in which the eye is placed at a point of the sphese, and the plane of projection is perpendicular to the dameter which passes throngh the eye. Inpparchus is sail, by constiuctung such a projection, and laying down sixteen pincipal sinis, to have provided an instiument for determung the hour of the nught. But P'tolemy is the first witel on the stereographic projection, whose woilk has come down to us, not indeed in Gieek, bat only by an Aiabic veision, which latter was rendered into Latin by Commandine.

The distingushing properties of the stereogiaphic projection ate, 1. that every cucle of the spheie, gieal and small, is iepresented by acircle, 2 that the angle made by the projections of two circles which mensect, is the same as that made by the cucles themselves. But nether appear to have been known etthei to Hippachus os Ptolemy, except the first property in the case of gieat cncles, whicli is the mone currous, as in the come sections of Apollonus, pubm lished long before the time of the latter, a proposition is given which very neally amounts to the same thing as the first-mentioned poperty. The first who distuctly announced it fon every cucle was Jordanus, in a leatise on the planspheie, witten at the beginning of the thirteenth centuy, but not pubished till 1507 . The oldest. known demonstration of the second property is in Leadbellen's Astronomy, London, 1728.

For the projection of a whole hemsphere, the stereographic has
some considerable advantages, but not so for smalleı portuons of the sphese At and nea the point opposite to the eye it is neally the same as the gnomonic projection, but father fiom the centic of the map the distotion becomes consideable. For common use in the finding of stars, it is altogethei madmissille, sunce stans which lie on the same line, or neauly so, in the appaient heavens, are placed in a cucle in the stereographic map, to which chacle the eye has no guide. Foi example, it is seen in our summer solstice map, that Piocyon, Rugel, and y Ruxdam ate nearly ma lue with each other, as me also α Columber, Sums, and Piocyon. Nether of these would be suspected, on looking at a steneographec projection
Theie is, however, one very useful application of the steneoglaphic piojection, (as of all others which suppose the cye to be in the axis, and the plane of projection parallel io the equator,) which wo notice because it is most effective in the point whore our maps ane weakest; namely, in lnyng down the vanous postions of the houzon. If a common globe bo reclified for the latitude of any place, it is then mdinferent whethen we suppose the globe fastened to the axis, and tuning with t , whule the houzon remans fixed, or whether we suppose the hoizon to be attached to the axs, which tums it the contialy way, whle the globe semans fixed. If we lay this down on a steicoglaphec projection, of whuch the place of the cye is the sonth pole of the axis, the hoizon will contunue throughout its whole motion to be represented by the same cucle, moving in the plane of the equatol, round a point, the postion of which depends upon the latitude of the place, being nener the crrcumfenence the less is the latutude. This was apphed by Apmon,* un his Cosmographaa, to a plamisphere for geognaphed purposes, and by the late D_{1} Wollaston \dagger to a sumilar one for the heavens. By it can be forud mmedrately the stas visible at the place for any hour of any day m the yen, together with the position on the visible hemisplere occupred by cach, as also the tume of rising,

[^6]settung, and coming on the meidian of each, to withun about five minutes*

The remaming projection whech was known to Ptoleny, is that now lsnown by the name of othogruphe, called by hum the Analemma, and descibed in lus woik of that name, which has descended to us in a Latin tianslation Its pmencie is not icducible to that of a picture, unless we suppose the eye placed at an mfinte distance. It may be moic easuly conceived as follows. Let the hemasphere to be projected be placed with its cucula base housontal, the place of each stau is the point of the ground-plane which is duectly undel the star. The distortion of this projection is very considerable towads the edges, and all cacles are represented by ellipses, except those which aue pauallel to the plane of projection. It has howevel, like all other projections, its own pecular advantages ; one of which is, that, supposing the plane of projection to be the equator, a stan is veny easily ladd down, when its nght ascensou and decluation are given.
Delambiel attubutes to Ptolemy a knowledge of the gnomonic projection, which he appeas to us to infur from very slight premises. We do not know that he lad down any map of the heavens which supposed the eye to be at the centie of the sphere

The first moden woik on the spheie which enjoyed any considerable ieputation, was that of John de Sacro Bosco, or Sacio Busto, an Enghshman, probably, fiom his name, either called Holywood or Halifux, or else bonn at one of those places He sludued, lust al Oxfoid, aftempads at Pans, and died in 1256, leaving behnd hum a Latin tieatise on the spheie, whech for more than thee humbed yeas contmued to be the pumerpal one m use. Beng witten m Latin, it was as well known on the continent as in England, and probably much better, for among the many commentators on the nfoiesaid woik, there is not the name of any Dinglishman of note.

The finst work which we can find, professing to theat of the sphere, and witten in English, is the "Castle of Knowledge," by

[^7]Robert Recorde, physictan, best known as the first introducel of algebia into this countiy It was published in 1.556 , and dedicated in English to Queen May, and in Latin to Caidinal Pole It is an unfivourable specimen both of typogiaphy, uniformity of spelling, and accuacy of reasomng, but coutans much cunous information on the then existing notions of astronomy. ${ }^{*}$ It does not iefer to any English woik on the subject, but only to Sacio Bosco and forctgn commentators. It does not contan any distanct account of cither projection, but the outhogiaphe projection is employed in the figtues.

In 1590, Thomas Hood published "The Use of the Celestial Globe in Plano, set forth in tivo IIemispheres," the first woik in English, which appeas in the Bibloographe Astionomique of Lalande, and of which he remals, "L'Astionomie commencat ì peicei en Angletere." This woik consisted of a very meage account of the stereogiaphe projection, together with an explanation of the mythological constellations, embellished with some sumises \dagger of the author

The finst woik on the gnomonic projection appeared at liome in 1612, with the following title -
"Prospectiva nova Coelestis, seu Tabulæ peculames ad Asteusmos 11 Plano delineandos, auctore R P. Christophoro Grirnblrgen, Soc. Jesu."

The author was born, accorling to Lalande, in 1561, at Falle In the Tyiol, and died at Rome, in 1636 Another edition appeared in 1679, edited by LI. A. Langenmantel, a Benedictme canon, which is in the Butish Museum. It consists pimerpally of tables for laymg down the vanous constellations in this piojection.

In 1674, folo maps, sumila to those of which this woik tieats, appened al Pais, under the following title -

[^8]"Globi Coclestis in Tabulas Planas reductı Descuptio, nuctora P Iguatio Gastone Pardirs, Soc. Jest Mathematico, opus posthumum."

Thess were six maps, lepiesentug the six aldes̃ of n cube circumscribed about the spheie, as described in the first Chapter of thus treatise.

There weie one of two other edtions The fint is in the Buthah Museum, and piesents six maps corrcspondung to those on which this woik trents, tud in paiticular we must notice that the figuos of the constellations aue turned with then backs towards the suectator, in the mannea repiesented in our plates, though the maps represent the interior of the globe. On this point wee shall presently speak

In the cousse of mathematics projected by Sil Jonas Moore, fos the Mathematical School at Clurist's Hospital, and published after his death in 1681, he hus placed, at the end of the Cosmoginply, six maps reduced fiom those of Father Paides, but in other respects a perfect copy of them These are, as fat as we know, the only maps of the kind yet publishod in England. Anolhei projection of the same species, but, whicle does not appear to have been copied, is to be found in the Allas of Doppelmaier, publighed at Nuremburg, in 1742 The constellations ale arranged in the same manner with regard to fronts and baoks,

We now come to the reasons which have recommended the adoption of the gnomoma projection, in preferance to any other. Generally apealung, tha princtical astionomer lias no need of maps, since catalogues have entucly superseded both theso and globes In such oatalogues the stars ne arranged in the order of therr ught. ascensions, which are given, as also their dechnations. The degiee of accuracy required is such, that unless maps were at least five hundred tumes as long and as broad as ours, and made of some matenial which does not shrink, they could not supersede a catalogue; and diven then, there would be many inconveniances independent of then size. The only case in which a map might le nefull is whete somo 'nevy object, such as a comet, having been observed for several dive,
 - inay fell the obsefver in what direction to look for it agam. But for
thes purpose, a map contaning a suth pait of the heavens could never be wanted, and the Atlases of Flamsteed oi Bode, which are well known to astionomens, and in which single constellations are laud down on a lagge scale, would better seive the pupose, Conse, quently, the astionomer has no use for our maps, othe than that which is common to him with the rest of the woild.

The common reader is desirous of seeing the relative position o the constellations, and seldom on never wants any large development of a single poition of the heavens. Theiefore maps of individual constellations would only peiplex hum by then minuteness, as well as by then detached character. At the same time, the possessol of a moderately good telescope, who puisues star-gazing as an amusement, requies more exact detal than could be furmshed in a very small space To the first descuption of persons, every piojection is prachically useless, which does not preserve the mann character of the relative positions, that is, which does not place those stars in the same line, which appear in the same line in the heavens. All puposes are bettor served in the gnomonc projection upon the circomscubed cube, than in apy other with whoch we ape acquanted, for as each map contans a sixil part of the whole celestal sphere, the moshimpoiturt gioups are to be found in the same map, and as the stanght lime, which joins two stans on the same map, is theiepresentative of the apparent shoilest clistance between them, all the stars which appeas on the same line in the heavens me found on the same line in the map. This is the paticular advantage of the methorl of projection, and by it, a peisan who has no dea of anthmetic on geometiy, or even of astronomy, except knowing the names of the prucipal stas, might possibly substantate his clam to be the discovera of a pey comet; or, if he were yery lucky, of an old one whose relmu is expected.

Suppose that a peison, so cncumstanced, weie to see, m m evenung's walk, some fant and cometay-lookug appearance in a paticula poition of the sky, near the constellation Onion, Upon looking al neughboumg stans, he sees that it appeas exactly in n line with the two shoulder stars of Orion (α and γ), and also with the star in the fool (β), and the stin above, and nearest to it in n line paallel with the belt, wheh is in Eridanus, and is maked β,

Having made these observations, he has, on his return home, the powes of obtaining the approximate place of the body, with a facility, and we may almost say, with a conectness, which Ptolemy mught have envied. On datavig stiagght lines though the stans above named, in the summer solstice map, it will be seen that the alght ascension of the appearance observed must have been 69°, and its declination above $4 \frac{1}{2}^{\circ}$ Noth.
The same method will of cousse apply to findung out the appellttion of any particular stau, which is not lnown, by means of two which are known. Diaw a line in the winter solstice map though α Aquire, and α Lyies, and it will then become very easy to detect α and β Capucornı, $\theta, \beta, \gamma, \zeta$, and ε Aquile, the thuce stuus in Sngitta, β Cygm, and γ Lym
It will be better for the beginnes to obsevve, for humself, stass which appeal in one hne, and to proceed to compare them with the map, than to follow the duections ladd down in any book.
The elative position of the constellations is not eassly recollectect; therr forms, and the manner in which they ace dispersed on the globe, are too irregula. To fix an the mind the first ough idea of then position, perhaps the best way would be to refer them to consesponding portions of the terrestial globe, in the following manuer ; or at least, it may be worth while for the reader to tiy whether he can derive any advantago from such a comparison. Let the instant chosen be the commencement of the sideteal day at Greenwich, that is, let the veinal equino be on the visible part of the mendan at that place. Then the following constellations will be veltical to, or oven the heads of, the countues which aue maked opposite to thein. We have chosen as often as possible the central patt of the constellation, or boundaries where they weie moie convenient; and it must. be recollected that the notion so given is the rudest possible.
Ursa Minor From N. Pole to Mackenzle River,
Draco Butish and Russian N America.
Cepheus Gieenland, Iceland.
Cygnus N. Atlantic, between coast of America and Azores.
Hercules W. of N. America, Gulf of Mexico.
Andromeda Medlterranean, Austia, Spain.
Pegastís Cape Verd Islands.

Cassıopeia	N and W Europe, Spitzbergen.
Peiseus	Caspian, Black Sea, Peisia.
Aurıga	W. Tatay
Lyny	E Tautay, Japan.
Ulsa Major	E Sibera, Sea of Kamscatka, N Pacific.
Camelopardus	W Siberia,
Orion	Ceylon.
Eridanus	Madagascaı
Canis Major	Ocean W. of New Holland.
Cams Minor	Boineo.
IIydia	New Guinea
Leo Minor	Ocean E, of Japan
Centauius	New Zealand and Ocean S. and E
Bootes	Sandwich Isles, and Ocean N, and E
Seipens	Pacific Ocean off Mexico
Ophuchus	Pactic Ocean off Peru and Columbia
Aquila	Columba, Peıu, Rivei Amazon.
Jyia	United States,
Corona lonealis	Off California
Celus	Congo, Mozambique
Alics	Egypt, Ethopia, W. Aıabia.
Trunus	E Aıabia, Hindostan
Gemint	Chinn, Enst peninsula of India,
Cancer	Phulippines, Ocean off China.
Leo	Ladione Islands.
Vingo	Society Islands, and Ocean N. W.
Libia	Marquesas to Pitcaun's Island
Scolpro	Easter Island and Ocean S
Sagittanus	Ocean off Chil, Buenos Ayies.
Capucounus	Biazul.
Aquanus	Ocean off Bazal
Pisces	Gumea and intenor of Africa.

To return to the projection; it has been objected that the constellations which are neat the comens and sides of the cube me divided among different maps. This is cerlanly the failug of the projection: but it must be remembered that every chores which could have been made has some temakable defect. And the obn
jection lies, not so much against the species of projection, as against the choice of the cube for the exterior figure on which to project But the cube, which is a solid of the least number of faces, renders the disadvantage as small as is possible. Had the maps been broken up into constellations, the same objection would have applied still more strongly, unless ench design had been large enough to include not only its constellation, but all around it; so that each constellation should appear in one map as the principal figure, and in several others as contiguous to the principal figure. This is what is done in the atlases of Flamsteed and lBode; and for small portions of the heavens answers very well; but it would very much have increased the expense of these maps. Any projection of the two hemispheres separately would have been out of the question on so large a scale. There appear to be only two ways of meeting the difficulty, and both of them expensive. The first, to suppose the faces of the cube extended, and the projection to be carried farther on each face, so as to get the contiguous portions, which would thus be repeated, some on two, some on three maps; the second, to have another gnomonic projection, in whicl the sides of the culbe should be parallel to the diagonals of the first projection. As the matter stands, we have the advyutages;-1, of having great circles represented by straight lines ;-2. of getting the circumpolar portion of the hetivens very nenly into one map ; -3 . of representing a whole sixth of the sphere in each mapi-4. of draying the most important part of the zodiac with very little distortion, These must be placed agains! the disadvantage of not being able to present to the eye all the most. remarkable groups; which is a defect only for finding the stars by means of one another, and none whatever for most of the other practical uses of the map. We need havdly observe, that thero is in each map a sufficient number of groups to diminish the incouvenience materially.
We now come to the question of the constellations. The writings of Btolemy (who lived gbout the year 140 of our era) which prescrved - fall inccount of all that had been done before him, were the most glossical works, on astronomy, till the time of Tycho Brahe, or about Ap: 1600 In forming his catalogue of the longitudes and latiLudes of the stars, he fixed the relative position of the constellations,
and rendeled it necessay to heep to his anangement, because ho descubed each sta, not by letters ol numbers, but by its position in the constellation. Thus, what we call β Onoms or Rigel, was dom nominated by Ptolemy, " the bught stai in the lelt foot."

The figures of the constellations are of no use to the astionomer, as such, a sta is sufficiently well known, when its 1 ght ascension and declmation ane given; and if letters refering to the constellation me used, such as β in Onon, γ in Diaco, \&c., it is not now to duect the attention to any imeginay figure of an amed man or a chagon, but to a paticula iegion of the henvens, which might with equal propmety have been called region A or region B. It is to the mythological antiquany that the higues are useful, as sometimes thowing light upon his pusuits. Eveiy ancient people has written its own veision of the singular fables whach are common to all mythologies, upon groups of stas in the heavens; and it might have been thought that some feeling of conguty, if taste weic loo much to expect, would have pievented the bulesque of mixing tho utensuls of modera life with the stones of the herore age, presenting much such an appeannce as the model of a locomotive steam-engine on the top of the Parthenon. But the Lacalles, the Halleys, and the Heveli, have ananged it otheivise, tho waterbener pous an pail of the stream which should wash the southem fish moto th sculpton's woikshop; a cupenten's sule has gol between old Chuon and the altar on which ho was going to sacufice a wolf; and the Lion and the ITydia, whose juxtaposition has made more than ono speculatol imagmo he had found the key to the whole allegory, the In tuath two astionomers fighting for a sextant, which Hevelus lan placed at then disposnl A gieat pat of the southem hemispheic is land out in mathematical instiuments.

If figues are to be diawn at all, it 19, as we have satel, for the hise tounn, not for the astronomer ; and wo mague the former will think it no loss that in our maps the hearens of Piolemy have been 10 er storal, and in no one diawing exceeded The names only, anil homdanes of tho modem constellatons, ane grven; but all the hagues ano those of Ptolemy, so antuged as to represent his catiologuc. Mi LIowad, who diew the figues, has faroued us with the following account of the alterations, whech he found it necessary
to make in the usual distubution of the stais, in order to represent the catalogue of Ptolemy
"The sta μ Cetı has been tiansferied to Anes; 14 was described by Ptolemy ns at the extiemity of the lind foot"
" α and θ Chucs have been appropiated to the fool of Centaums, agreeably to Ptolemy's descuption of them :"
"The nyea Endeuns is not cauned so far to the south-west as the stan now beaung the mame of Achenna, because the star descubed by Ptolemy as the last of the nver, is placed by ham in longtude $\infty^{7} 7^{\circ} \frac{1}{2} \frac{1}{6}$, and south latitude $53 \frac{1}{2}^{\circ}$, giving a difference of noaly $50^{\circ} \mathrm{m}$ longtude (with full allowance for precession) and 7 or 8 degrees in lattucle"
"The parations I have found necessary in dawning the figures accordng to Ptolemy's descuption, are umimpoitanl. A ieference to his catalogue will set any question lespectung them at iest, as I have adhered closely to it in every mstance "
The maps which we are descibing, repiesent the interior of the henvens, that is, the spectator is supposed to stand at the centic of the cube The difference between a map and a globo, gonerally spenking, is, that in the former the spectato is supposed to bo in the moside, and in the Iatter, at the outside The consequence of chus difference is, that when the not th pole is uppermost, a spectuto who places humself drectly opposite to the vemal equinox, secs Aures upon the left hand in the map, and upon the iight hand in the globe. When a spectator looks at the equinox (which suppose to be at the south, on the merdann), fiom east to west is fiom left to ight, and the appanent daly motion is in that diection' but this apparent dally motion bungs the adac on the mendan accordung to the order of the signs, and therefore Anes follotos the equinox, and must appear on the left. On the outside of the globe the effect is sevoised, (see page 5) unless we suppose the backs of figures to bo presented. The question now auses, did Ptolemy concenve lumself to be looking at the constellations from before or behund, from the inside or outside of the sphese? Four different hypotheses are possible, between which, at fist sight, it might appeai easy to decide, by inspection of the catalogue, but, as we shall piesently see, a question has been rased. This much appears celtan, that before the time of Jayei,
A.d. 1600, all maps weet darwn so that the spectator etthet looked at the backs fiom the outsicle, on at the fionts foom the inside of tho sphete To this we have not met with any exception, though we cannot of comse undentalke to venfy such a proposition, Aptan's Cosmographia (edtion of F_{1} sius, 1553) contans an example of the first, and Postellus' s synorum colestum ves a configuratio, published also in 1553, of the second Bayeı adopted anothen plan, desciilsed and reasoned upon by Flansteed in the following paragraph, which is tinuslated fiom the preface to the thad volume of the IIistoria Ccalests, p 156.
"Tycho Brahé died in the year 1601, two years after Bayer pultw lished his Uranometur, wheren he gives us maps of all the constellations, his figues ane tolenable, and the stans well enough laud down aecoidug to their places in Tycho's catalogue, and many other small stans are added, which are not in the catalogne of Tycho, and which, it appeans, he (Bnye1) land down by the unassisted eye, by comparing them will the fived stars inseited in his maps fiom Tycho's catalogue, whose nomenclatue is the same But haviug drawn all his human forms, except Bootes, Andhomeda, and Vugo with then backs towauds us, those stans which all before lum placo in the right shoulders, sides, hauds, legs, of fecl, tall in the left, numl the contury, in his figues, with which, therefore, whosoever goes aboul to examine the ancicnt obsenvalions, of the catalogues of tha fixed stars punted or pullished in any language, will fand humself' nuch preplexed, if he be not befochand appued of this, 'thes reason probably of Bayel's eriol, was, that ofien findung the woild
 Greek Lexicons for the sense of them, he always found vwros velle deted by dorsum, and μ erapgevov by interscapilum, and concluted that interscaplium was the space betwist the shoulden blades on the back; and whenever he met with cethet of theso words in the descrpption of any constellation, excepl $V_{\text {ug }}$ gad Andiomoda, he diew it with the back towads us. Whence he makes all those stus that Ptolemy (and the ancients, and all sinco them to lumself) phaced in ught

[^9]shouiders, amms, sides, legs, and fect, \&c., of therr forms, to stand on then left, whereby he enders the oldest obsen vations false and absuiud To remedy this faull, when he mentions any eminent fixed star to be in dextro humero, ol deatrâ tubni, he adds alas in sinistri, \&c.; which, indeed, seems to correct the misconception, but beugg rione but seldom, will perplex those that make use of his maps, and rendes them useless Had Bayel but dhawn the map of Sagitlanus, or any other of the human forms, so that the stars placed no the ught hands, shoulders, sides, and feet of Ptolemy's catalogue mught stand on the same on his figues, he would have seen that they would all have their faces towards us, and thee cly would have learned, that in Ptolemy's Greek, veros signulies the crates corponis, or the nbs, and
 also on the forepat of the boty or upper pat of the bieast, and these would then have been no meongruty between lus figutes and ancient descuptions. I am convinced that not only Plolemy but Homer humself uses those woids in a more comprehonstive sense than the Lexicons commonly allow. Nevetheless, in most of the maps of the fixed slass that have been euginved suce those of Bayet, the forms are taken fiom lum, and have the samo taults wath his."
It so happens, that owng to stans being frequently refoned to the shouldens, or to some pat of the dress, as Orion's belt, which will equally apply to the fiont on hund pat, the back is very seldom ducecly mentioned, but when such a necessity does ausc, the word veros or μ crapperos is used, whech (though Flamsteed, without cilugg any authority, curiously enough supposes them to mean the fiont, hemg led away by his hypothesis) anc always usel, the first for the back gencially, the second for the part of the back between the shoulders. To dhave a conect inference, we must iemurk, that suce the supposition of an unside view of fiont figures makes the heavens agree with Ptolemy's desciption as to the right hatid on left hand postion of any star, $1 t$ is plan that Ptolemy placed the figmes fionting invands on the sphere Whether he supposed himself to look fiom the maside or outside, must be settled by asceitamung whetler ho places stans which aue in the muddle of the figure in the fiont or in the back; and the precedng words prove that he did the latter. Bayer, thenefore, should
have reversed the oldex of the constellations, making the signs of the zodac proceed fiom left to ught, instead of fiom aight to left, at the same time when he made the other change We have already mentioned that in the gnomonce projections which have preceded the present, and we may add, in most maps of the seventeenth century, the plan of Baycr has been followed, that is, an mondo view of figues fionting outwads. The same plan has been adopted in our maps; not with any view to conectness, but with an avowed depattue from it, and for this reason, that an inside verw of the sphere was too essential to astonomical puyposes to be sacuficed to histoncal and mythologieal tuth But at the same tume, m choosing between the reveisal of hight aud left, or fiont and back, the former has been prefened, ns beng a less volent depat ture fiom the actual appearances which Ptolemy supposed hmself to observe when he formed his catalogue. We may sum up the result in the following memor anda -

」 Ptolemy took an outside velv of figues fionting inwaids; our maps are an mside view of figwes fionting outwands, thenefore the left hand of a figue on our map is the nght hand accooding to Ptolemy, and vice versi.
II To obtan a representation of the sphere of Ptolemyt in every respect, look at tho maps throuyh the paper
In the cube of page 20 , that we might present to the studenit

[^10]maps in every 1 espect like those which this tieatise accompantes, without rasing a question which was theie of no importance, wo have diawn such maps on the outside of the cube To set thisught, and to make the rube there given a perfect outside representation of the sphere, wite \bumpeq where \wp s now, all the lest of the figure remaining the same

The longitudes of the stars have been altered mote than 20° by piecession since the time of Ptolemy, by which means theni position with respect to the equinox, is very different fiom what it was in his day, In notiong this mequality, we shall also include thoso of mutation, abernation, and 2 efiaction, by whech the apparent places of the stas aue also affected, as well as parallax, which alters the places of the planets That is, we shall explam the natuo of the phenomena without enterng into therr causes

Let the stass only be kad down on an mmoveable wooden globe, which is placed inside a glass globe. On the glass globe datw the cucles of ught ascension and dechantion, and let an axis puss through the poles of the echptic On this axis let the glass globo tain slowly and umformly sound, in the dinection contiany to that in whech the constellations of the zodace are reckoned, at the ante of about $1^{\circ}{ }^{\circ}$ n seventy iwo yeus This motion of the circles by whels ught ascension is measured, is the effeci of a slow comical motion of the eaith's axis. It changes the right ascension and declantion of stans, and also then longitude, but not then latitude ; becanse the pole of the echplic keeps its position, and the latitude is what the nugulas distance from the pole of the ecliptic wants of 90°. If wo suppiose the exterion glass globe to seman fixed, the same relative change will be produced by causing the intenor globe to revolve round the pole of the echptic in a contiany duection, that is, accoiding to the orter of the signs. This will make every star move slowly lorwail along its parallel of latitude, which is the most simple way of stating the phenomenon This is called the precession.

While the glass globe above mentioned is sevolving round an axis which passes through the poles of the echptic, let this axis atsolf (Its centre semaning fixed) make a very mumte conical oscillition of about meteen yeus in duration. The effect will bo that tho parallel of latitude will not merely move along over the slar, buh will
have a lateral motion, which will make it oscillate to and fio, being first on one side of the star, then on the other. If the motion be caused by the interior globe, the effect will be that the star, instead of moving along its paallel of latitude, will descibe a waving curve, to which the parallel of latitude is a sort of axis The effect of this is called nutation, and the utmost departure of the pole of the ecliptic fiom its mean place is about $17^{\prime \prime}$. It arises fiom the axis of the eaith not describing meicly a cone, but a cone fluted fiom the vertex to the base

While the extenor glass globe is performing the two motions above descubed, let the stars on the intenol wooden globe move on that globe in the following manner:-

Let a star in the eciptic oscillate backwards and forwards in the ecliphc, though an arc of about $40^{\prime \prime}$ in the cousse of a year At the pole of the ecliptic let the star which has hitherto been in the pole, descube a yearly circle of $20^{\prime \prime}$ of radus about the pole. Between the two let the star describe a yearly ellipse whose gienter radius is $20^{\prime \prime}$, and is parallel to the ecliptic, and more or less flattened according as the star is neaser to, or farther from the ecliptic; as is shown in the preceding figure. The alteration of place arising fiom this motion is called aberration, and anses fiom the motion of the eath, which produces an alteration of the appaient diection of the rays of light which meet the eye; being a phenomenon of the same lund as the ulteration of the apparent dizection of a ship's counse, when seen from another ship which is in motion, If wo suppose the star to move an consequence of piecession and nutation, as in the second supposition of the precedung descriptions, the effect may be represented as follows. Instead of supposing the star to descibe the waving curve alluded to along its parallel of latilude, let the centie of the cllipse of aberration describe that curve. Let the ellipse always present its flat part to the pole of the echptic, and let the star describe the ellipse in the course of a year.

Refruction is the effect of the atmosphere upon the ays of light, by which they are bent a little towards the eath, in consequence of which the star appeas somowhat higher than il really is. Al the
horizon, where it is greatest, it is somewhat more than half a degree, at the zenith it is nothing ; and of any two stais, that is the most altered by refraction which has the least altitude Owing to the difficulty of laying down the horizon on our maps, it is not easy to represent the effect of 1 efraction upon them

The preceding complicated motions cannot be well understood by any but a mathemntician ; it is evident that the three, precession, nutation, and aberration, will sometımes conspue, or each ucrense the effect of the othen, and sometimes destroy each other's offects either wholly or partially The following figures show the species of waving curve in whoh four different stars descibe their parallels of latutude The first is that of δ Orions, the second that of α Jeeonis or Regulus, the third that of the Pole star, and the fourth that of y Dracons

The nutation, fiom its smallness, and the length of its period, is iusensible on the scale which we have chosen. The effect is thereforte eutirely that of aberration and preeession. In y Dracons, Whoh is near the pole of the ecliplic, nuid, in which, consequently, the precessiopal motion is small, and the ebernational netuly circu-
lar, we see the effect of a cucular motion, where the circle is slowly carred fonwad But in Regulus, which is nealy on the ecluptic, and on which the effect of precession is large when compared with that of aberration, the latter being little more than a linear oscillation, the eflect is very different. In $\delta O_{110 m s, ~ w h i c h ~ i s ~ n o t ~ n e a r ~}^{\text {n }}$ eithor to the eclptic or its pole, we see a mixture of the preceding chanactenstics. The finst two stars have thioe yems' motion reprex sented, and the latter two, four years.

Parallaw is one of those effects which ae not easily latd down on the maps, owing to their dependence upon the hoizon All astionomical tables are marle to tepresent the appearances of the henvens fiom the contre of the globe, wherens the spectator is at its circumference. Imngine tivo persons wilh telescopes, one at the centie, the other on the surface, the mtervenuggiound bong supposed transparent. To see a stal in the zenth, both must pomt their telescopes the same way, viz., drrectly upwads; but to look at a stat in the horizon of the surface, or between that homzon and the senuth, the spectator at the centie must point his telescope lugher than the one at the circumference. The difference of the ducetions of the tivo telescopes is the parallax of the star. It is gicatel, the ncaler the object looked at; tor the fixed stars, it is totally msensiblo, on account of their distance, and equally so on owr maps, for all the bodes of the solar system except the moon, for which it is sometimes grenter than a degiee. For the stu it is nboul eight secomets and a half.

CHAPTER IV

vina expluned the constinction on which these maps of the sta drawh, we now ploceed with the description of the manner ch they have been filled up, and subjecta connected with it. When ye speak of maps of the heavens, it must be, in some wi other, under limitations such as nccompany ous notions of ma the earth To make an absolute delneation of the latier is in 3able the size of the paper imposes the necessity of introducn ly such oljects as are of a visible magnitude in the scalo which osen. If we had to consider physical geography only, the be inciple which we could ddopt, supposing theie were means rying it into practice, would be to suppose the spectator plac such a height above the surface, that the country which he is ap should be as much under his eye, and appear of about the sar ze, as the paper on which he is to draw it. If in auch a ca lerably distinct vision could be procuied, the minor features of t ndscnpe would diaspeedr, and the relative importance of tho hich reman could be estimated We have a map of this sort de drawing of the face of the moon, as sean through a powerl引евсоре
But for the parposes of political geography, such a map wou equire considerable addtions Rivers too small to be seen are t oundaries of powerful states, and towns which could not be omilt vould be altogether imperceptible. These two considerations ha heir analogies when wo come to maps of the heavens. If we we to propose maps of the visible heavens', it would be necessary first ascestan what they are On a hazy night they are not the same on a clear night; and even at the same hour and place, the eye one man will distinguish' objects which have no existence in that another Stlll grenter will be the dilierence, if wé suppose one have a telescope, which the other has not the heaven of a twent foot reflector is toto coalo different from that of the naked eye, or ev of, a tolesable refractor. It might be, and has been, proposed, to adn map"s of the hedvens to' some given telesoopio-say, for example
sefiactor of five-feet focal length, with a magnifying power, say of two hundred tumes But even this would be no cerlan citerion, for instuments of diffetent makers, and different mstiuments by the same maker, have different degiees of goodness, white different people will discern mote or less with the same instument. As a rough guide to the selection requiste for uthly, such a test might be taken; but it would be far fiom accurate near the limits.
Again, historical or practical considerations may mest a very faint object with an interest which does not attach to much brighter ones; and the postion of a small star in the heavens may render it of moie importance than many of greater popular fame Weic the astionomer to choose, he would ather the whole constellation of Orion were anmhlated than lose the pole stan, and y Diacoms, both as passing near the zenith of Greenwich, and as bengy the stan by medns of which aberration was discovered, is of much greates interest than Surus, the bughtest star in our heaven. Let it happen that a little star of the elghth magntude is predicted to lie almost directly in the apparent thack of a coming comet . it immedaately becomes of much greater importance to determine the place of that star very accurately, than of dozens which could bo named, and which are always visible; for the most powerful telescopes are seldom furnshed with any vely exact means of finding the place of a star in the heavens, but are provided with meco ometoss, which serve to ascertan the relative position of two objects so nea each other, that they appenr in the field of the telescope togethei. IIence the place of the small star beng setled, and that of the comet with sespect to it , the absolute place of the latter is found.
Fiom such considerations, it appeas that some test must be found of a mose pactical character than any yei named; and when we consider that any method will include the stars visible to the naked eye, and even to infenion telescopes, it is olvious that the difficulty al the limits is a matter whach entirely concerns the possessor of a good telescope, and no ollee porson, except masmuch as he may not like to have has maps ciowded with objects which ho cannot see. But even of these there to many of whinch he must xend: so that the only question 1 s-1. How to lay down a sufliclent number of objects of intorest or high cunosity:-2. Ilow to
enable him to diav a line between those which exist with reference to his astronomical means, and those which do not?

But for the astronomer, it is necessary to lay down, for the most part at least, such objects as have been obseived, and actually find a place in his books of reference. A new object is seen, and the finst question is, of all those which he near it, which have had ther places well determined? where ts he to look for information respecting them? This is much the same as askng-By whom have they been obsewed? in what catalogue are they found? Ifence it becomes most requisite that all maps of the staus should be hased upon some one ol more of the best catalogues If there should even be visible stars (of which there are several) which do not find a place in any of the standerds of astionomy, they would be of little use. Nothing could be very acourately determined by them, for they are not very nccurately known themselves. The interest which belongs to pecular portions of the heavens-the zodiac, for example, which always contans most of the planetary bodies-has caused thom to be more carefully noted than the rest This will make catalogues rather standards of astronomical importance in eforence to stars which they insert ot omit, than of comparative visuhility But this is precisely what is desirable on account of the astronomer; tund, ns we have observed, it is of little consequence to any one else whal method is chosen.

Astronomical catalogues are of three kinds:-

1. Those which are intentled to glve the places of the starg contaned in them with the utmost degiee of accuncy which the existing state of astionomy will admit: these, as may be supposed, camot contain a gleat many stars, That of Di Maskelyne, publishod in 1805 (and, then considered the most correct which had apponred), contaned only thirty-six stars. This number was afterwards increased in the Nautical 'Almanac; and at present the places of ono hundred stars are yearly given in that woik, of which fifty-four have the istandard character here described. As these must be considered, for every praction prupose, what they aro called in the Nautioal Almanac, the "primppal ffized stars," we give a list of them, the stainderd stars beng in italios They are in order of right ascension, and the numbers refor to the hours of right ascension :-

0	IX.	XVII.
ν Pepasi (Algend),	${ }_{1}$ Argus.	${ }_{5}$ Uns00 Mmoris.
β IIydri.	¢ IIydia	σ Octantis.
a Cassiopea	0 Ursac Majoris.	a Herculas.
β Ceti.	ε Leoms.	β Diaconis
β Cet,	* Leonis (Regulus)	a Ophiuchl.
α Unse Min. (Polaris.)	X.	γ Diaconss
0^{\prime} Crth.	η Argus.	XVIII.
α Endiam (kohemar	a Ufisco Majon is.	μ^{\prime} Sagittaril
α Apzoths.	XI.	δ Urse Minoils.
II.	δ Leomes.	a Lynce (Vega.)
γ Coti.	δ Irydie et Chatems.	$\beta \text { Lyrca. }$
a Coll	β Leoms	S Aquula.
a Porser. ${ }_{\text {III }}$	γ Uisac Majotss.	XIX,
a Porsol. \% Taury.	XII.	δ Aquala.
γ^{2} Eyidani,	β Cameleontis	y Agrula.
γ IY.	α^{1} Crucis,	a Aquila (Atra β Aquila.
α Tauni (Aldobnumn)	β Cosvi 12 CanumVenaticolum.	XX.
	12 Canum Vonaticonm, XtII.	a^{3} Caprioot $\mathrm{A}^{\text {a }}$.
Q Auruta	Xins.	a Pavoma.
B Oroms (R)	\& Vorghas (spica)	λ Uisco Mimoris.
¿Orionls,	η Urion Majoris. ף Bootis	$\alpha^{\text {c }}$ Clym,
¢ Lepois.	β Centaur	61^{\prime} Cymai,
E Oizoms	XIV.	XXI.
a Columbe	\% Boolns (Aicturus,)	$5 \text { Cygni. }$
¢ Orionis.	x^{8} Contruni.	a Cophal.
VI.	a blootis.	β Aquarz
μ Geminorum.	α^{0} Librce.	β Onphoi.
a Argus (Canopus,)	β Unsos Minoris.	a Pegasi.
51 (Ifev.) Cephai.	β Unso Manors.	a Aquaiu.
a Cunis Maj. (Sinus)		\% Grus.
E Cams Mnj.	β Libleo. α Conona Borcalls.	XXIT.
VIr.	a Solpontis.	5 Pegnai.
	§ Uisto Minouls.	a Puscis Aushalis (lyomolnout.)
α^{4} Qominorum(Cnstor) a Can, Minn.(Piocyon)	$\beta^{3} S_{c o i l} \text { pu. }$	mallinut.) a Pegast (Makab.)
β Gominorum(Pollux) YIIT.	XVI, o Ophiuchi.	XXIIT.
15 Aigns.	a Sconpui (Antack.)	- Pisciun
E IIychos.	y Dincoms.	γ Cepher.
Vrsoo Majoria	a Thanguli Ausialia.	a Amdiomodar

With the difference between the more exact catalogue and the second-1nte one, the maps have nothing to do, for the quantity in question is inapprectable. A few hundredths of a second in the time of coming on the meridian, is all the difference of eriors that is found by observation to exist between the fist and second-rate stars of the preceding list.
2. Catalogues which are intended to 1epresent a large portion of the heavens with considerable accuiacy, but not with that ligh degree which it is possuble to obtan by multiplying obser vations of the same star. Such catalogues are always mote than sufficiently exact for the purposes of a map,
3. Catalogues of objects which are interesting, not as marking out definte points in the heavens, but on account of the phenomena which they present, whether of a fixed, periodical, or indefimtely changing character. Such are double and triple stars, variable stars, and all the class of nebulæ, The exact places of these being a matter of no great importauce, only such right ascensions and declinations are given as will enable the obsenver to find what he wishes to look at. But even these are sufficiently exact for the purposes of a map, in which the whole field of a telescope is but a very small carcle.

So soon as the order of the maps has been settled, as to what stars or other objects they shall contain ol omit, it becomes necessary to fix upon an epoch The small motion of precession, described in p .64 , is contmually varying the absolute positions of , the stars with respect to the equinox, or of the equmox with respect to the stars But this motion, amountung to only a degiee in serentytwo years, does not affect the utility of the map, as a map, for that tume at least, and even at subsequent periods may cause it to bo a ubeful history of the past state of the heavens. The time will come when the pole-staf is no pole-star at all, for any of the puposes which it now assists; but such a change must be the work of thonsands of years, and need not be taken into account. In some degree, to, obviate future inconveniences, the maps in question represent the heavens as they will be in the year 1840 -so that till that time they are in fact changing towards exactness. In 1858 the equinox will be wrongly placed by about a quapter of a degree; in 1912 by about a whole degree.

The adentification of the several stas is the next point to be considered If the student in astionomy should imagine that every possible star is distinctly laud down in some catalogue or other, he would be veiy much mistaken. The stars he finds catalogued are for the most pat those which are visible to the naked eye, or to telescopes of modeate aperture,* But every accession of optical power makes the heavens present new stars and nebule, to an extent which human industry can hadly be expected to classify. The Beilin Academy, in 1825, invited all such astronomers as were maclined, to share among them the tash of making minute maps of the heavens. It was proposed that, cach of twenty-four observers should take one hour of ught ascension; and "that, having formed a chart including all the stars of the Histoine C'eleste and Bessel's Zones, he should put in, by estimation only, all the stars that could be seen by one of Fraunhofer's telescopes of thirty-four lmes aperture" A few of these charts have been published: the stars of couse have no names, nor any other method of identification, except their place in the map, which lools like a spoled skeleton of a map plentifully spinted with small diops of ank We have thus, besides the stars which are in catalogues, a lage reserve of addlional points of eference, which come, one and another, into use when a comet or a planetary borly passes by them. An observel compares a comel or plamet with a small stm, which he finds convemently in the field of his telescope with the comet or planet He can, with the micrometer, settle the position of the comet with rospect to the star, much better than he can settle that of either star or comet in the heavens. To make this clearer, observe that most astronomical instruments may now be constdered as divided into two classes \dagger-meridian and equatonal The first have telescopes which move in the plane of the mendan only, as then name imponts they are ancapable of any lateral or azumuth motion (except a very small quantity, to allow of the proper adjustment of the inshument), and consequently

[^11]only see a star for about a minute before and after it comes to tho mernlan. The object of chis fixed chasoter is stability, it being found that every motion of which a telescope admits opens two or three sources of error Even with such precautions, no meridian instilument can, without verifioation, be considered as perfectly the same for twenty-four hours together ; and it is the business of the astionomes to malke such observations as will, by comparison or combination, point out ot do away with the instrumental carors. And If even mendian instruments are thus to be in a coninual state of correction, which are of the most simple constatiction, mechanically spenking, still less can equatorial instruments bo made the duect means of setting the places of heavenly bodies. These are to bo so constructed, that the telescope may, by the mere motion of the hand (or which is now preferied, by clockwoik), be made to follow any star in the heavens throughout the whole tume durng which it is visible There must be then an axis parallel to the axis of the heavens, both ends being pirots of rotation. Off this axis must come nother axis perpendicular to it , on which the telescope must turns An hour-oircle must be connected with the principal axis, which may point out nearly at what period of the rotation the tele* scope is for the time being; and a declmation circle must be fixed to the cross axis, on which it may be seen how much the telescope is elevated above the position in which (if the instrument be true) it shodid look at a point in the equator. If all the preceding conditions be fulfilled, and the telescope be once pointed on a ptar, a slow motion given to the promepal axis will make the stai 1 emam visible. But these instiuments cannot be so constucted that they shall accurately give the absolute right ascension and decination of a star, oh adociunt of the variety of conditions to be fulfilled, and other cincumstances; but they chif be so constructed, that the hour and declination circle's shall be sufficiently exact to find he star, and place it somerwhere in the fleld of the telescope. When two objects are together in the field, a micrometer may be applied, to give very accurately the relative positions of the two.

- The "accurate determination of the places of stars and planets by large "ixixed instruments is the proper vork of public observatories while the determination of such relative measurements as can bo
made by equatorial instuments is not only the course in which a private observer can make lumself most useful, but also that in which astronomy piesents itself in the mosi interestung light to tho gieater part of mankind. But the object of this digression has been the manner in which the uncounted class of unknown stas become useful, An observel, perhaps many thousand miles fiom a first-class obsenvatoy-say un Soull America-makes a sences of olselvations upon a comet with an equatonal mstrument, not by absolutely determung 1 ts place, but by compaing it with a number of unknown stans, whose places he finds with sufficient nemness to onable others to identify them. Say, for instance, that August 13, at $22^{\mathrm{m}} 47^{78}$ past ten in the evening, he has found that a comet is m the field with a small stai, whose right ascension is* (as near as his mstrument will show) $13^{3} 20^{m \mathrm{~m}} 8^{\circ}$, and its declination $20^{\circ} 15^{\prime} 48^{\prime \prime} \mathrm{N}$. By accuate miciometrical obselvations, it is ascertaned that the comet has $17^{8}, 3$ mose of right ascension than the star, and $23^{\prime \prime}$ less of decination. This is trausmitted to Europe; and by the mose powelful ards whach lavgo obsevatones contan, a small star is detected veiy nean the place in question (such as would be visible to the, foreygn observer, according to hus own description of his optcal means), and this same small star, being accuately measured, is found to have a ngltat ascension of $13^{14} 20^{m} 41^{4} 5$ and a declination of $20^{\circ} 16^{\prime} 2^{\prime \prime}$. Consequently, the appaient nght ascension of the comel, at the time and place in question, was $13^{\prime \prime} 20^{\prime \prime \prime} 58^{9}, 8$, and its declunation $20^{\circ} 15^{\prime} 39^{\prime \prime}$. The use of the Bellin maps, when completed, will be, 1. Thal the disappearance of any stas will be detected, if the process be sepeated at mitervals; -2 . That when any unknown star is made a point of reference, as an the preceding supposed obselvation, a look at the map may at once give the ofservatoy astonomer assurance of the stat beng toally theie, and not so contiguous to anothen as to make a doubtrul whach to observe.

[^12]enable him to daw a line between those which exist with reference to his astronomical means, and those which do not?

But for the astronomer, it is necessary to lay down, for the mosl part at least, such objects as have been obseived, and actually find a place in his books of reference. A new object is seen, and the first question is, of all those which lie near it, which have had ther places well determined? where is he to look for information respecting them? This is much the same as askmg-By whom have they been obseived? in what catalogue ale they found? Hence it becomes most requsite that all maps of the stans should be hasad upon some one ol more of the best catalogues If there should even be visible stars (of which there are several) which do not find a place in any of the standards of astionomy, they would be of little use. Nothing could be very acourately determined by them, for they are not very accuiately lnown themselves. 'The interest which belongs to pecular portions of the heavens-the zodtac, for example, which always contans most of the planetary bodies-has caused them to be more carefully noted than the ast This will make catalogues rather standards of astronomical importance in reference to stars which they insert on omit, than of comparative visibility But this is precisely what is desirable on account of the astionomes; and, ns we have observed, it is of little consequence to any one else what mothod is chosen.

Astronomical catalogues are of three kinds:-

1. Those which are intented to give the places of the stars contaned in them with the utmost degiee of accuacy which the exusting state of astionomy will admit: these, as may be supposed, cannot contain a gieat many stars, That of D_{1} Maskelyne, published in 1805 (and, then considered the most correct which had appeared), contaned ohly thirty-six stars. This number was afterwards $1 n-$ creased in the Nautical 'Almanac; and at present the places of ono hundred stars are yearly given in that woik, of which fifty-four have the standard character here described. As these must bo considered, for every practical piupose, what they aro oalled in the Nautioal Almanne, the "principal fixed stars," we give a list of" them, the standard stars being in italios They are in order of right ascensisp, and theinumbers refor to the hours of right ascension:
had been preceded by Alexandeı Piccolomini,* who in his book Della Sfera e delle stelle fisse, has carried the punciple whoch Bayer's fame is founded upon futher than his successol: for he has abnadoned the prictures in favour of letters As this is an histoncal point \dagger of some curiosity, we shall in the note extract the passage in which he explauns his views. Bayer himself afterwads abandoned lettes in favour of numbers, in the joint edition \ddagger of humself and Julus Schiller, but notwithstanding this rejection, (which indeed was not known, as it has never been very distunctly stated in modern tumes that Schiller's edition was in cality the woik of Bayer, as to the astronomical part, §) Flamsteed and the more modern astionomers have agreed in using the lettess of Bayer, though not without some mistakes and misapprehensions.
[^13]After the catalogue of Flamsteed was published, which contuned both the old nomenclature of Ptolemy, and that of Bayer, it became the practice to adopt a mumbering for the stars in different constellations, derived from the postion in which they stood in Flamsteel's catalogue Thus the star γ Geminolum, described by Ptolemy as in the left foot of the second twin, happens to be the twenty-fourth star in the constellation in Flamsteed's calalogue. It is therefore called 24 Geminorum, and gonerally spealung, when a number precedes a star, the number in Flamsteed's list of the constellation is intended. In Piazzi's catalogue a different method Is adopled: the stars in ench hour of right ascension are numbered eocording to the order in which they come on the merrilan, without reference to the constellation in which they nue. Thus if the 25 th of all the stang of Piazai which are in the fomth hour should happen to be a sta in Gemint, it would be the 25 Geminorum of Pazar, namely, a star in Gemini, not the 25th of the constellation, but the 25th of the stans which have (or had) between thee and four hours of right ascension. The stars in the calalognes of Hevelius, Bradley, and Lacalle, have also their numbers, and the consequence is, that the whole system of nomenclature of the stars is in ${ }_{7}$ state of great confusion, with the agreenble certainty of its being almost imposable to intioduce ona general and uniform system droughout Europe. The only method at present appears to be to attach to the numbering some abbievintion or other conventional datinction for the name of the numbore) In the Index to the Astronomical Society's Catalogue, an easily tomembered alliteration is adopted : Bradley's numbeis are in braukets, and Piazzi's in parenthesses, Those of Lacalle have the letter O ; those of the late Mr . Fallowh have Far. It is not dilflcult to foresee that all this confusion of nomenolature must increase until it becomes a matter of first-rate astronomical importance to agree upon the use, of some gerieral method; and then, laborious as the task will be, it must be nccomplished To add to the diffeculty, conslellations which are used and' alluded, to by some, are not recoguized by others.
With the maps, however, these difficulkies have nothing to do, except as they render extreme accuracy of description very diffoult, and multiply the chances of erior. An inquirer who has occasion
to look for a star in the map which he has found in tho heavens, will, when he finds it, see its proper descuption annexed. It matters nothing to him what 24 of Hevelus, or 29 of Flamsteed, really means, it is sufficient that there is a sta which will be mderstood by astionomers under that mane, and that loe knows which sta it is. Another, who wants to find out in the heavens the stai callerl 24 Geminorum of Flamsteed, must have sellect, previously to coming to the map, the way in which he is to denote his star; and though he may have encountered a difficulty, he will, of counse, have met with it in a manne fot which no map can be ıesponsible.

The magniludo of a sta is a term used to denote its apparont billancy. Before the anvention of the teloscope, the stars were imagined to be badies of sensible apparent magnitude, as mdeed it is obvious they seem to be. And it was an unanswerable angument against the probability of the Copernoan system, that, admitting (which was necessaly to be supposed) the fixed stars to be so distant thal the eath's whole orbit would appear no larger than a point to them, their apparent magnitude made it necossnay also to suppose that the largest of them, at least, were many times the diameter of the eath's oibit in dameter. The telescope shoved that the appeanance of magnitude was altogether illusory, and dependent upon atmosphenical phenomena; for though upon hazy or troubled nights stas may appen large, their magnitulo is not permanom, but accompanied with a tremulous, boiling, or bubbling outline. And in good climates and still nights, no micrometer will give a sensible outline and appaent diameter to any bul large stars. That these do appear of some slight scusible magniturlo in lage telescopes may be true; but it may be shown fiom the laws of optica, that not even a mere point, supposed to emit light, could be made to appear as nothing but a pomt, in a lens with sphoriond glasses at least. The term magnitude then morely denotos brilliancy to the eye, and is itself perfectly indefinte. We see without a glass some five ol six gradations of light in the several stars Those of the brightest class are said to be of the first magnitude; those in the next set, which differ sensibly from those of the first magnitude,
are sard to be of the second, and so on. Telescopic research has detected stars which should be called of the sixteenth magnitude; but as to the fauter objects, it must be obselved that not only will different observers assign different magnitudes to the same star, but even the same observer on different nights And many stais which to Bayer appeared brighter than others, do not do so now ; but owing to the uncertainty of the denominntions employed, it is 1 m possible to say whether this proceeds fiom a slow change in the brilliancy of the star, or from difference of cucumstances and halits of perception in the observers There are now vaious means of estumating the appaient brillancy of different stars, that is, their relative brillancy. Sir J, Herschel, fiom his father's experiments, estimates the quantity of light recerved from the seveial stars which bear the first six magnitudes to be in the proportions of $100,25,12,6,2,1$. fiom his own, he rates the light of Sunus at about 324 tumes that of a star of the sixth magnitude. (Astionomy, Cabinet Cycl, p. 375.)
It is sometimes attempted to subdivide at least the grenter magnitudes, and to talls of a star of the $2 \frac{1}{2}$ magnitude, and so on. It was usual to call a star which was consulered as half-way between the second and third magnitudes, one of the 2.3 magnitude. but Mr. Baily, in his edtion of Flamsteed's Catalogue, lately published, has adopted the fractions of magnitudes, and at is to be desired that the example should be followed. The following will show that it is not likely two observers with different telescopes * could expect to agree withon half a magnitude by mete estumation. Sir J. Hetschel (Mem Astron Soc. vol, nii. p. 180) compared a large number of the magnitudes assigned by himself to stars with those assigned to the same stars by Professor Stuve in his Dorpat Catalogne. Talıng an average for each sort of magnitude, it would appear that the stars designated as having the magnitudes in the first column by Professor Struve, would be styled as in the second by Sir J. Herschel; (the second column' is in magnitudes, and tenths of magmitudes.)

[^14]| | H | | S. |
| :--- | :--- | :---: | :---: |
| 4 | H | | |
| 4 | 54 | $8 \frac{1}{2}$ | 95 |
| 5 | $6 \cdot 5$ | 9 | 103 |
| $5 \frac{1}{2}$ | 7 | $9 \frac{1}{2}$ | $10 \cdot 8$ |
| 6 | $7 \cdot 1$ | 10 | $11 \cdot 1$ |
| $6 \frac{1}{2}$ | $7 \cdot 4$ | $10 \frac{1}{2}$ | 12 |
| 7 | 81 | 11 | 11.5 |
| $7 \frac{1}{2}$ | $8 \cdot 8$ | $11 \frac{1}{2}$ | 1.1 |
| 8 | $9 \cdot 0$ | 12 | $12 \cdot 7$ |

It appears, therefore, that a mass of estimotions by two obseivers, both accustomed above others to this class of iesenches, not only produces results considerably different in quantily, but presents absolute anversions of order in the case of the smaller objects That the difference depends on climate is not probable, since it would also affect the well-known and admitted stars to which the others are referred for example, Strius is of the finst magnotude all the world ovel, whether in an Englsh os Italian sky But whether climate does act ol no, this much appears clean, that the method of naming magntudes by estimation is not a suie method of obtaining a universal classification.

The reader would probably not be wrong in constdering the matter thus. If a person used to look at the heavens were to assert that he had seen a comet like a sta of the finst or second magnitude, it is probable that he would be conect, If of the thad, the comet might be concluded to be somewhere between the $2 \frac{1}{2}$ and the $3 \frac{1}{2}$ of all the recognized stars in the henvens; of of the fourth, between the 3 and the 5 ; if of the fifth, between the 4 and the 6 , and so on. With regard to the maps, we need only observe that the stars are designated aften the best catalogues. The only expeumental methods of determining the relative quantity of light transmitted by different stars give vague determinations, not fil for sellling the questions above tieated with any degree of accuracy. In the telescope, a contingeal circumstance affords a method of comparing fant objects somewhat better than naked estimation The measuring instrument itself is not the telescope, but ceitain very fine thionds, (frequently of spuder's web,) fixed or movable, according to the natue of the observations to be made,
and placed in or neal the focus of the object-glass. The amage of the star is formed in the focus of the object-glass, in or near the plane of the theads, and the eye-glass may be consudered as a micioscope, for magnifying the unage, and (a defect whinch cannot be helped) the theads, of wures, as they are termed. Those wnos cannot be made visible without mose light than comes fiom a small sta, to remedy whach theie is an onince near the muddle of the tube, close to which a lamp is placed, the light of which is ieflected upon the wnes, and the field is thus illummated 'IThe onfice can be expanded or contracted, on closed altogether, and thus the qquantity of illumination may be vaued Now when two objects aue so fant that the illumination of the field may be made, to extungush them altogether, it may be ascotained what quantity of illumination is just sufficient to destioy each, and thus a notion (hot a very perfect one) may be formed of the quantities of light recesved fiom each. But it must bo obsenved, that it is not only difficult to get a lamp which shall always yeeld light of the same intensity, and to know whether any green lamp be such or not; but as the vaious lights of the hervens aue almost always mote or less of cufferent tints, the same lamp will extingush one star of one colour sooner than another of the same bughtuess but different colour. Thus a red light would entuely extinguish a stan of the same tint, before a weaker, but blush stat, had disuppreated. It is by no means impossible that a diligent employment of lights of differcut colours might be made to add to ou knowledge of his part of astionomy, and it is in such fields as the preceding that tho private observel may become a usoful assistant to the public one, It would be of little use for an individual to eiect an observalory with fixed instruments, for the purpose of obtaming right ascensions and declinatons, unless he could give up so much time, and procue such a duantity of assistance in icducing obselvations, as would place hm on a level with hational observatories The following account of the late Mr. Groombridgen will illustute ou meaning --
"In the year 1806, he became possersed of a splendid thansil encle of four feet draneter, (tho workmanship of oun celebinted

[^15]Tioughton, so well known by has name, and the excellent use to which he applied 1 t ; and he ummedrately commenced the task of forming an exnct catalogue of the stans as low as the 8.9 magnitude, withmn 50° of the North Pole
"In this aduous undentalking he persevered with singular assiduaty for ten yeans, and in the year 1816 had completed about 30,000 observations in right ascension, and the same number in declunation, on this part of the henvens-a scies almost without a paallel in the amnals of moden astionomy. But Mi Gloombridge was not molined to be satisfied with merely registering his olseivations, he apphed himself with equal mdustiy to the hasassing laboun of reductoon, on which ten years more wele exhnusted; untul, in L827, he suffered a severe attack of paalysts, fiom which he never perfectly recovered Dunng this peeiod ho had apphed the reductions which depend upon tefiaction, as well as mstumental and clock erross, to all the obser vations, and had obtanel the mean places of nbout one-thud of the whole number, so that nothing more was requed for obtamng the catalogue, precisely as it would have appeared fiom his own hands, except to apply the corlections for aberration, nutation, \&c, accoiding to his own tables"
Such is the sort of labour by which an unassisted individual performs work which will vie will that of a lage and permanent obsevvatory; bul the amateur has anothes lune of utility, All questions connected with stais or planets-except the appatently simple one of making such observations as shall add the prediction of them futtue places with, if possible, moceasing accuncy from year to year-belong to the private obsemver, at lenst wull such time as Governments shall found obsenvatores for purposes expressly equatoral, as it would be convement to call them (See p 73) We shall devote some pages to a very shorl account of the vaions ways m whech a person fond of lookng at the heavens, provided with a modeately gond telescope and miciometel, may make himself useful, even without mathematical lrnowledge

Let us take first the vaiations of the fived stans in magnitude and coloun. It is evident that the question, whethei a fived'stan ictolve on an axis or not, can never be settled except by some vauations of appearance presented by its different paits, as they come one alter another under the cje of the observer, and also that
a regular succession of repeated appeanances in a star 19 a very strong presumption of the existence of a rotation sound an avis. For mstance, the stat β Peisel will to-day, at 8 pm , appear of the second magntude, to-monow, at mudnght, it will be decidedly smalles, and in another day, it will nealy have recovered its fist appeanance Thus succession of changes can be obsenved repeatedly, time after time, and the inference is, that the said stal revolves iound an axis in 2 diays, 20 houns, 48 minules The only question is, how such pretensions to accuracy can be sustamed, since it is most evident that no one can pretend to say, to a munte or an hou, when the star is mosl or least bulliant. This question is one of a lange number which every thinking person must ask, when he hears that prediction and accomplishment dufer fiom each other by such poitions of time as the twentieth part of a second; and in this pailicular instance it happens that an answer can be given which will satisfy the most scupulous. To take a veny simple case, let us suppose the length of the yem is to be determined, that is, the time elapsed between the sun being twice, successively in the summer solstice Let il be supposed that any one single observel is liable to a mistake-say of five minutes-one way on the other, in determinng the exact tume when the sun is in the solstice, so that, by possiblity, the observations of two successive solstices may give π yea ten minutes too long or too short. But 1 emember that the error possibly to be encountered is an absolute quantity, not connected with the tume elapsed between tivo obselvations. Supposo then that the time of the sun's solstice is obtaned in June 1830, and June 1831. 'Whe year thus obtaned may be ten muntes too long or ten minutes too shoit. Let us suppose that we have alieady a rough notion of the length of the yea-say exactly 365 days. Instead of observing the solstice of 1831 , let us watt tull that of 1832 . Then being liable to an enol of five mmutes, one way or the other, at each extiemity, the two years so estunated may be ten minutes too long o1 too short Consequently, the single year obtamed by halving the period of two years cannot be moie than five minutes too long on too short If we had wated tull June 1833, and talen the thud part of the whole peitod (possibly wiong by ten minutes) for the actual length of the year, the error of a single year could not have been more than the thad part of ten minntes; and if a hundred
years had been so taken, the enor could not have been mose than the hundredth part of ten minutes, and so on Thus the ait of astronomical observation consists, in great pait, in taking iesults obtained at times so fal distant fiom ench other, that the enor of the two extiemities shall be divided among a gieat number of the penods in question, msteal of beng borne by one only; and the correctness of modein astionomy is thus in some degice due to Hippachus, who lived about a century and a half before Chist This constitutes the great difference between astonomy and all other sciences, pure or mixed-except peilhaps geology, ma small degree If Eucld could be discovered to-monow to be a forgery of twenty years' date, it would malter nothing, in any sense, howeves remote, to the truth of any one proposition in geometiy. Bat establish the fact that Tycho Biahé wiole in 1700 mstead of $1(600$, and several of the fundamental results of astionomy are thereby proved to be wrong, move ol less.

The cataloguc of vaiable stans, considered as well established by Sur J. Herschel *, in I833, is as follows. A few resolute private observers would probably merease it consuderably -

Star's Name	Periol of Resolution	Yariation of Magnitule	Discovorors
β Persel	$\begin{array}{rrr} \text { D } & \text { H, } & \text { M, } \\ 2 & 20 & 48 \end{array}$	2 to 4	$\left\{\begin{array}{l}\text { Goodrıcko . . } 1782 \\ \text { Pulizch . . } 1783\end{array}\right.$
δ Cepher	$\begin{array}{llll}5 & 8 & 37\end{array}$	313 5	Goodrejke - . 1784
$\beta \mathrm{I}$ rom . .	$0 \quad 00$	3 4 $\frac{1}{1}$	Goodriche . 1784
${ }^{4}$ Antinor	$7 \quad 4 \quad 15$	$3 \frac{1}{2}$ 4t	Prgot . . . 1784
* Herculs , .	$60 \quad 60$	3 4	W. Iterschol . 1790
$\left.\begin{array}{l} X \text { Sorpentis- } \\ R A, 10^{\circ h} 41 \mathrm{~m} \\ P \text { D, } 74^{\circ} 15^{\prime} \end{array}\right\}$	$180-$	$7 ?$	Madmgrg - . 1826
- Cetr . .	384 -	20	Finlmins . . 1500
x Cygm -	396210	11	Knch . . . 1687
367 (130d0) Ilydro .	494 -	410	Mruraldi - 1704
31 (rlamsteed) Cygn	18 yoars	${ }^{6}$	Janson . . 1600
120 (Mayel) Leoms	Many jears.	7	Koch - . . 1782
* Sngiltain -	do do	3	Iralley . 1676
ψ Leonss .	do do,	00	Montamal . 1007

[^16]To these may be added the sudden appearance and disappearance If staus without any appaent cause, such as the stan of Huppachus, which led hum to draw up the first catalogue on tecord, and that ecolded by Tycho Buahé, in L572. Fiom the appearance of a new ,tar, in the same part of the heavens, neal Cassiopea, in the years ${ }^{4}$ 345, 1264, and 1572, it seems possible that a fevy yeas after 1872 the same appeatance may agaun be presented
The disappealance of stas is a well-recorded fact, nor is the lost Pletad of mythology the only mstance. One cause of the loss of a stan out of a catalogue has been thus, that the supposed stan was in fact a planet, which of couse contunued moving in its onbit, insteal of emamng to be venfied by those who attenwads examined the catalogue. In this way the planet Ulanus appeas once or twice in old catalogues as a star And this considerably enhances the ment of Sn William Herschel, who, it must be observed, was not metely gazing through a telescope, without any object bul to puck up chance currosities, but was examinng the whole visible heavens bit by bit, and tume aftel tume, that by successive investigations, woth the same telescope, he might note any changes of magultude, colour, or motion; and a very recent communication of Siguor Cacciatore \dagger, of Palemmo, shows the use of continued mnestigation
discoveries, he may comsult the Theatise in the Library of Usoful Knowledgo (IItatory of Astronomy), or the Histoncal Account of tho Progress of Astronomy, by Mi Narrion Baldum, 1833 Hut we do not cite tho treatise above-mentioned merels becauso it is at good treatise on astionnmy, but because Sit J. Herschol is ono of the finst muthoxites on extra observatomul astronomy whel oxist at prosont

* It must ba oluserved, however, that both the first years ano stated as lumagg boen those of comets by Lubiniotski, on vaious authonites, and as thas writor montions tha siar of 1572, wo do not know on what evidence tho finat two aro foundod, On lookng nito Tycho Brahe, De Nova Siella, y. 331 , wa find that the unthority for the two finst sicllo (we sny thas, booause the Latm worl may stand for star, planet, 01 comol) is his gwa contemporary, Cyprian of Leovitid; and of the star oi 045 (or moro probably 0 (d) Tychb remarks, sed a quo Historiogi apho whabad, non adduort. On the stan of 1204 Tycho snys, Annolavit alle deson iphonem ex quadam manuscoiplo oodree desumsisse. Now nerthor eudences will do at tho present day, even to astablish a comet, much lass to thas. tingush a suppospid new star from a comot, wheh other authouties tond to establesh., Tyaho Drahe himself seems to thme, that it ho doos not doubt tho evidence, othons may; for ha adds, Nec faolé eredide) m illum heeo falsa provè is nobus obliusisse, Quorsumua 14. frader al?
' 1 In aletter to Caplam Smyth, R.N Read to the Abtronomual Sochety, Duc, 11, 1835,
"In the month of May I was obsciving the stars that have propei motion-a labour that has occupied me seveial years Near the 17th star, 12th hou, of Pıazu's catalogue, I saw anothei, also of the 7 8th maguitude, and noted the appoximate distance between them. The weather not having permitted me to observe the two following nghts, it was not till the thud night that I say il agam, when it had advanced a good deal, having gone farthel to the eastwad, and towalds the equator But clouds obliged me to trust to the following night. , When at last the weather permitted observations at the end of a fortnight, the stal was aliendy in the evening twilght, and all my attempts to recover it were furtless-stars of that magnitude being no longei visble Meantume, the estimated movement in thee days was $10^{\prime \prime}$ m toght ascension, and about a minute, ou rather less, tawards the noth So slow a motion would make me suspect the situation to be beyond Uianus"

Here, then, is somewhat mose than a suspicion of a new planetary body. It may be a century before it is secovered agam, or it may haye been found agan at this moment. But it will always be easy to establish by calculation, as to any new planet, whether it was ou was not the stai observed, at the time and in the place specffied, by the worthy successol of Pazza.

Changes in the place of stais ane well known, though not of so gieat magnotude as the one m the preceding paragıaph When a star still appears to have motion, ovel and above that which is due to precession, nutation, and aberiation, it is called a proper motion, or one renlly existing in the star. The thee motions just cited, being common to all the stais, dccording to then different laws, have been tarced to diffarent motions of the eaith But when one star appears to have other motion, which another close to it has not, it is then necessary to attubute the apparent motion of the first to a real motion in the stal If we could discovel a new motion, common to all the stars, and amounting to this, that all the stais in one pat of the heaven incieased then distance a litlle, whole all chose in the opposite part came neaper together, it would then be evident that the cause was a motion of the whole sola system towards the point at which the strus opened most Consudenng the solar system according to the laws of mechanics, which have been so successfully
applied to the derivation of the relative motions of the sun and planets, it is mullons to one against the sun being absolutely at lest in space But the questions-which way the whole system is moving together, with what velocity, and how soon we may expect to ascettain these points?-are wholly unanswerable. All we know of the distance of any fixed star fiom us 15 negative-namely, that it is not less than about five thousand million of times the distance fiom the suiface to the centie of the earth it may be this only, ou neal it, of it may be a hundred times as much, or even moie. In the mean tume, the proper motions of such stats as have them do not exhibit any such degiee of elation as will justify our supposing that they arise from a motion of our system, as will mote distinctly appeas in the following list ${ }^{+}$of such stars as have more than half a second of motion, either in nght ascension ol declanation The fist column contans the name of the stars, if with a single number, it is IFlam-steed's-if, with a number in parentheses, it is Pinzzi's ; or in buackets, Baadley's, A number of Hevelus has (Hev) The second column contains the magntude of the star, -the thud, the proper motion m ught ascension, being the average of the yealy motion fiom 1800 to 1830 , the sign - , denoting that the right ascension is climinushed, while in all other cases it is inciensed. The fourth column contans the average yoarly motion in declnation for the same period, -denoting a southward motion, all the othess being northwad. The stars are arranged in the order of right ascension, so that it will be seen that the quantities and duections of the molions appear to be perfectly megulan, or proper to the individual stams, withont any dependence on their places in the heavens The motions me cxpressed in hundredths of a second (of space), so that 59 means 59 hundredths of a second, ol 59 per cent. of a second Obseve, as to the quantity of the motion, that the sun's dameler contains albout nineteen hundred seconds. In the columns which have been left vacant, no result has yet been obtamed.

[^17]| Star | 3ng | R 1 | Dos | Star | Mng | n A | Doc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - Cassiopoes | 2t | 125 | | ζ Uisa Afyorts. | 3 | 68 | |
| ${ }^{64}$ Plisum | 04 | - 64 | | - Centaur | 2 | 84 | 08 |
| (130) Coth . | 6 | 155 | | a Boots . | 1 | -114 | -190 |
| (177) Urso Minoris | 7 | 090 | | (127) Libra | $6 \frac{1}{3}$ | 60 | |
| - ${ }^{\text {C Cassioncer }}$. | 4 | 218 | - 50 | x Hereuls | 6 | 65 | |
| (189) P1sclum . | 6 | 84 | | r Sorpentss . | 3 | | -129 |
| 43 (Ifov) Cophor | 5 | 206 | | 49 Libro . . | 51 | - 73 | |
| (234) Ursw Minorls | 6古 | 245 | | ${ }^{4}$ Usso Minoris. | 4 | 93 | |
| a Uisa Alinors. | 2h | 146 | 0 | A Opluch: | $4 \frac{1}{2}$ | 69 | -109 |
| μ Cassiopen . | 51 | 601 | | 30 Scorpur . | 7 | -83 | |
| 8 Cassiaper | 3 | 65 | - 16 | $\mu \mathrm{Hereulis}$ | 4 | 23 | 72 |
| $\tau \mathrm{Cet}_{1}$. | 31 | -172 | 83 | p Ophuch | $4 \frac{1}{2}$ | 18 | -106 |
| (123) Cetı | 61 | 154 | | (380) Dracoms | 5 | 77 | |
| 18 (IIev.) Yerser | 4 | 203 | 1 | ${ }^{3}$ Sorpentis | 4 | - 56 | 73 |
| 12 Erulam | 31 | 15 | 63 | 36 Dacours | 5 | 73 | |
| (47) Enulanı | 4 | 253 | 52 | χ Dracoms . | $4 \frac{1}{3}$ | 59 | 37 |
| : Endaun | 4 | -94 | \rightarrow | δ Ursm Minoris | 3 | 241 | 1 |
| \% Erxama | 33 | -24 | 64 | 60 Drucoms . | $5 \frac{1}{2}$ | 65 | |
| 40 En tuan | 5 | -214 | | ${ }^{\text {b Aquila }}$ | , | 83 | |
| 104 Trurı . . | 5 | 64 | | - Dracons . | 5 | 18.1 | |
| 43 Camelopardalı | 5 | - 67 | | a Aqula | 12 | 65 | 32 |
| «Canis Majorss. | 1 | 61 | -124 | (29) Sagittar . | 6 | 127 | |
| ${ }_{\text {a }}$ Canis Mmoris. | 13 | - 66 | -112 | 69 Dracons | 6 | 118 | |
| β Gommon unn | 2 | -62 | 1 | * Cepher | 4 $\frac{1}{2}$ | 17 | 9 |
| 11 Argas. | 53 | 78 | | ${ }^{*}$ Cepher | 32 | 52 | 80 |
| ρ^{2} Cancrı . | 0 | -52 | | 75 Draconis . | 54 | 112 | |
| - Ursoo Majoris . | 31 | 55 | -24 | 24 (Hey) Cepho | 53 | 313 | |
| π^{1} Canerr . . | 6 | - 56 | | 61 Cygns . | 52 | 646 | 310 |
| - Uisw Mnjoris. | 3 | -140 | - 53 | 77 Draconis | , | 125 | |
| - Ulisa Majoins. | 413 | - 73 | 10 | $70 \mathrm{Clgma}^{\text {. }}$ | 6 | 1 | |
| 36 Urso Mrjoris. | 5 | - 65 | - | τ Cepher | $4 \frac{1}{2}$ | 82 | 14 |
| ξ_{ζ} Uisca Majonis. | 4 | - 32 | - 56 | - Cophor | $4 \frac{1}{2}$ | ${ }^{3}$ | 5 |
| 83 Leoms . | 8 | -69 | | 28 Cepher | , | 68 | |
| β Vrrgims . . | 34 | | - 47 | \& Cepher | G | 81 | |
| 4 (IIev) Diacoms | 6 | -83 | | 31 Copher | 0 | 59 | |
| 14 Vargins | 63 | - 71 | | ${ }^{*}$ Pegast | $6 \frac{1}{2}$ | 6.3 | |
| n Covis . | 4 | - 53 | - 10 | 51 Pegasa . . | 6 | 50 | |
| 8 Camum Ven. | 4.2 | -101 | 17 | 34 (IItov.) Cephas | $5 \frac{1}{2}$ | 55 | |
| γ Firgmas . | 4 | - 50 | - 3 | $\gamma^{\text {Piscuum }}$ | $4 \frac{1}{2}$ | 73 | 2 |
| δ Vugims . | | - 54 | -25 | - Cepher - | 7 | 105 | |
| $43 \mathrm{Comm} \mathrm{Ber}$. | 6 | -60 | | 39 (Hav.) Cephor | 0 | 398 | |
| 61 Virgmis . | | -84 | -101 | 85 Pegas | 6 | 117 | |

In the preceding list, the first thing which will stuke the observer is, that the proper motions in ught ascension me, on the whole, much giecter than those in decluation. But snce ught ascension and decluation ate, the results of measuiements, which depend only on the position of the eath's avis, and the plane of the ecliptic, or plane in which the eath moves round the sun, it camnot be supposed that thete is any physical connexion between these cucumstances and the motion of stars whuch appean totally uncounected with the earth. Such might be the suimise of any one, but it may be very soon shown that there is a smple geometucal reason why it must necessauly be, ceterls parrbus, that the motions of stans ane gieater in night ascension than in docluation.

Let P be the North Pole, $\infty M \bumpeq$ the equator, and S nad S^{\prime} the places at tho begroming and end of a year, of a bla which has the proper motion SS^{\prime}. Let $\Lambda S C B$ he the encle of the apparent dimanal motion of the star at tho beginnug, and PS, PS', the horary cucles. Then the wholo of the sta's motion $15 S S^{\prime}$; the motion in dechnation is CS^{\prime} : while the motion in ught ascension 1s, nol SC , but the pat of the equatol conlesponding to SC , namely, MM^{\prime}, greater than $\mathrm{S} C$. If all the stars were in the equato, then the sevean $\mathrm{SCb}_{\mathrm{b}}$ (If wo may ment such a plual) wontd conncilo with thenr 1 espectiva $\mathrm{M}^{\mathrm{M}} \mathrm{M}^{\mathrm{s}}$; and if theno were all limds of proper motions, we should upon the whole see no renson to call the valuations of eghat ascension greater than those of dechmation. liut if all the stans wese very nom the poie, very small proper motions would make daflenences of aght ascension of sevenal
hours. To take the extreme case, suppose a star very near the pole to pass actually though the pole in the comse of the yea. Then theie would be lwelve houns difference between its ight ascension on the tivo sides of the pole, and by supposing it to pass as near the pole as we please, we may thus make a yearly difforence of right ascension as noar as we please to thelve homs

The stars in the preceding list which have then namos in Italics are double atas' that is, though appeang only sugle to the nalked eye, they are separated by telescopes of more on less power, into two stans close to each othel. There might easily be conceped one star which should hude another, owing to the line of then junctoon passug, when sufficiently lengthened towads us, through the earth's orbit, which in companson of the distance of the stars fiom us is a mere point. But it would be aganst all probability to suppose that in an mfinite extent of space so thinly spread with stans, in companson with what might have been the case, a great number of hundieds of stans should this appear couples, owing to the mere position of theu lines of junction. If twenty thousand grans of sand were thrown up before the eyes of a spectaton, at ten yads of hum, and all depaved of futher motion at one given moment, the chances are enomously aganst five hundied of them being so placed as to hide another five hundied in whole, of in pat, and still more would be the probabilities aganst mere accident of position, as we must call $1 t$, making so lange a proportion of discemble strus double. The inference to which the mind would be strongly led, is that thas juitaposition is a pait of a acal comexion between the two stars, which constitutes them one system having mutual ielation between theu motions, and very probably that whel is found to exist betiveen the sun and planets in om system. It neaded no very long consideration of the planetary system (when it began to be known) to daw the inferenco tha in all probability the fixed stars were themselves the suns of othes systems, each contiolling the motions of its own than of planets and satellites But expenence has shown that thas supposition lacked boldness, and was but a testriction unstead of an extension No one was sufficiently hady to imagine two suns demonstrated, and in some in-
stances three or four strongly suspected, with all the probabilities of cach having its own than of planets remanng just as before But we must explan what we mean by two suns.
The suns of a system must be defined to be those bodies which slune by their own light, and which are masses of matter comparable to each other in size, so that nether must be consilered as a mele speck, when the other is likened to an orange.'* This defintion may requine extension fiom fatue discovenes, to make it include all bodies to which it shall ol may be convenient to give the name of suns, but al present it answers every purpose. If we could suppose Jupiter to have light of its own, just enough to be seen with the most powefful telescopes fiom a fixed sta, or of we could suppose its teflected light to produce such a phenomenon, then the observess in that star would see our sun and Jupites, as a bught sta accompumed by another, extiemely frunt, which sevolves round it, the two boing mseparable by the naked eye. But as it stands, we have in our heavens stans of not very different degrees of brillancy, and of which there is no 1eason for supposing that either is the only sounce of illumination to the other, but the contrany, snce therr lights are geneally of nearly the same intensity,

[^18]and of dufferent colous (though this is not conclusive). These stais revolve round each other, $2 n$ ellipses, like the planets. But before proceeding farther, we have some remarks to make on the mannes in which this subject conceins several, perhaps many, of out seaders. The first motion mentoned, namely, the proper motion in the heavens, concerns the observatory astionomer entuely, both as to the phenomenon in question and the difficulty of detecting it. For not only is it his office to assign by prediction everything that affects the stars considered as refeience points in the heavens, but the quantity in question is so small, that nothing but the most porverful instaumental auds and the gieatest skill in observation will detect 1 t. But the means of many provate observers might be made useful in the delicate task of detecting the relative motions of double stars, nor need any one be deteried by the adea that he cannol humself make use of his observations aftel they are made, or apply them to determme what are called the elemen/s of the orbit There me several steps in astionomical work: firstly, the determmation and selection of the phenomenon to be obseived, and of the proper mstument, the mestagation of the defects which are peculiar to that instiument, (and eveiy one has its own,) and of the proper method of making the observation, so as to avoid as much as possible of the erior, and have the means of temoving the rest by subsequent computations, secondly, the observation atself; thrdly, the reduction of the observations, or the clearng them fiom the effects of one phenomenon and another, which must not be, taken into account, fourthly, the discovery and selection of such methods and formule as will, when applied to the observations, produce those genear datu which ase called elemonts, and when known, form the most conventent quantities with which to set out in the attempt to predrct the future fiom the past; fifilly, the actual deduction of the future phenomenon The fist is the woils of a mathematician and mochanician; the second, of any person who will give a shoit tume to the puctice of the sules and maxims deduced by the fist, with or without undeistanding the principles on which they have proceeded. the thurl, of a very ordmany computer; the fourth, of a mathematician and natural philosopher-neithes Newton nor Laplace was mose than equal to his task in this de-
partment of the science; the fifth, of a skilful computer, well versed in the results of the fouth W_{0} need not enlarge on the advantages which would result, lave resulted, and do result, fiom the same person beng competent to every pat of the preceling duty. what we have here to say is, that the desue of beng useful may be accomplished in any one of the preceding paihs, without much attention to the others. But our busmess is hele with the actual observen, who has what is to most minds the most plensant and easy task of the whole, though as indispensable to the success of the united operation as any other Indeed it is impossible to say which of the preceding should be dispensed with fingt.

A person with a moderately good instument, and some attention to its use, will not find the tesults he may produce neglected. His fellow-labourers will take the taw matenal he funnshes, and apply all the successive steps of the manuffacture to t. Noi will he lose the ciellit which is due to him, for to omul mentonng the name of an observen, the nature of his unstrument, and the place wheie the ongunal observations ate to be found, would be to ensure the rejection of the results of such obsel vations both abioad and at home The paticular case in question, namely, the fundamental obsetvations of double stans, are peculanly pointed out as the most certann field of the private observel, because they requive no clock, unless one be used as a convenient methol of moving an equatoinal telescope. The day of observation is all that is necessary to be known; and a tume-plece, with its necessay accomprnment, a transt instument, is not wanted An equatoral telescope of sufficlent power to separate the two stans, and a wene micromeler, ane the necessaty apparatus. of the pinciple of the latter we slanll groe a general description, not entering into any of the nuceties of ats constuction, and supposing thoughout that the ingtument is perfect.

The wre micrometer consists in the addition of an apparatus to the eye-glass of a teldscope, such that, on beng inserted mito the tube, the field presents the usual appearance of a luminous cicle, Cut by four very fine wines, parallel, two and two, the first paur beng at right angles to the second. It is found that the appaialus can be turned round, so as to place erther par of wres in any duection.

One pair of wiies is fixed, but the other par consists of one fixed and one movable wne; the latter always remaning parallel to the fixed whe, but capable of having its dastance moreased or dimınished by a sciew, which canes round a small cucle giaduated on the edge, into (say) 100 parts. The theads of the screw are so small, that a whole revolution of the graduated circle canes the thead to or fiom its parallel thead by n very small space, and as we have supposed 100 divisions on the cucle, and as the gradudtions of this laticu aie so distant that the position of a fixed mdex may be iead on the cucle withn a quater of a division, we have thus the fom-hundredth pait of the effect of a whole revolution easily ascentanable We might suppose the other whe moved by a screw at the other end, bul this is not necessary. We can now ensily see that one wire may be made to cover one star, (which is very easily continued if the mstiument be canted by clock woik ${ }^{*}$ at the same sate as the heavens,) and the movable wne may then be adjusted to cover mother starl, both beug in the field together The observation is then made, and is to be pead off. See how many revolations, and pats of revolntions will bung the movable wire home to the fixed wie. the distance of the two stans is then knowh in teims of the divisions of the mictometer

The question now is, what do the divisions of the morometer stand for P If the atist atlempled to construct the mstrument so that each revolution of the sciew should answes exaclly, say to 20 seconds of distance, he would centamly lose his labour. Serewcutting is in a very high state of petfection, all things considered, but the cirons of the sciew ale, of course, magnified in the telescope, perhaps 250 times. The antist can cut the divisions of the selew sufficiently near to equality roth each othe1, but cannol deteimue wilh sufficient nearness how many secouds of space in a given telescope will answer to ench tevolution. The observer, therefore, being only fumshed with an mostument, ateh division of whech merns something, must find out fiom the heavens what that

[^19]somathing is And this notion of an astionomical instiument, so diferent fiom the common one, namely, that it is an awhwad mass of wood, glass, \&c., which must be taught by one stan what to say of another, will be heie easily illustiated. The lundamental unit of measurement thoughout astionomy is the diunal revolution, which is made to be 24 houns If a sta be exactly in the equator, every second of this 24 hours (page 27) answers to 15 seconds of space. The obseiver separates the wies by (say) evactly 10 revolutions of the sciew, and putting the telescope upon a star in the equato, (if not, a correction must be apphed, which is not here to be considesed,) he finds that the star takes $22 \frac{1}{3}$ seconds by a sidereal clock to move fiom one wue to the othei, on 22'5, answelang to 15 tumes as many seconds of space, ol to 337 " 5 The tenth pait of this, or $33^{\prime \prime} 75$, is the value of each sevolution of tho sciew, and the hundiedth part of this, ot $0^{\prime \prime} \cdot 3375$, is the value of each of the bunded graduations A common clock ot watch will here be sufficient, but even without this, he mny mensuro the dameter of the sun on the meridian, at which tume the diametel in question is given in the Nantical Almanac (predicted) Suppose, for instance, he finds it to be 60 revolutions, nnd L 2 of the divisions of n revolution, or 6012 divisons; and that the Nautical Almnnac gives $31^{\prime} 56^{\prime \prime}$ for the dameter of the sun, or $1916^{\prime \prime}$. Then 1916, divided by 6012, gives $0^{\prime \prime} \cdot 3186$ [oi each division, or $31^{\prime \prime} 86$ for each revolution.

By such a rough description, it may bo magined that an mdividual with lessuse to follow his own verws, some means of providing instruments, and a moderate zeal for the prosecution of detals, need not be deterred by any idea of dificulty from ondenvouring to be of use in practical astronomy. We now proceed with the subject of double stars.

It was obseived by Sir W Herschel that some of these double stars revolved slowly round ench other, by measuring what is culled their angle of position, that $1 s$, the angle made with the mendian, by the line joining the stars, which, were theie no iotation, ought to remain always the same. In 1803, Sir W Herschel announced to the Royal Soctety the motions of y Leonis, a Boolis, ζ LIerculis, δ Serpentis, and γ Vuguis, all of which havo been subson
quently confirmed. Many hundreds of stans have sunce been added to the list; every accession of powe to the telescope separates new single stars into double stars, and there is no denying the possibility of every star in the henvens being double, though it is a stiong circumstance in favour of single stas, that on own sun appeas to be one, Foicible as aie the presumptions that eveiy double star is a connected system, and not a restalt of the position of the line of junction, it is yet proper to distingush between stars which de proved to be comected, and those which are not (as yet). The latter me thenefore sumply called double stans, and the fonner binany stans, ot mote properly bunary systems. It is found by obsenvation that ceitan double stans 1 evolve sound each other, and it was natioanlly the first mquay, whether they revolved round each othen accordung to the same laws as out planets sound the sum, of satellites sound thert pumaries. The method of testing any astonomical theory, is to assume it, and deduce its consequences, and then to see whether those consequences are written in the heavens. This method is completely misunderstood by ahmost all tho vanons speculators who have tued to overthow the Newtonan system. They seem to imagme for the most part that Newton reasoned ay follows, if such and such attiactive forces exist, cestan motions most ensue, but those specified motions are found to exist, therefore the attactions laud down must exust also. This nould not be good ieasonng, for the only deducible zesult is, that these is a consequent probability in favonr of attraction. The saal state of the case is contamed in the following demonstrated propositions 1. That borkes on the eath are pulled towads the eath by a force to whach the name of attaction is given, 2, That this does not depend upon the air, smeo it holds of bodies in an exhausted recerver, 3 That detached portrons of matter attract each other on the eath ${ }^{+}$, 4 That all the motions of the solar system do take place just as, it can be shown, they wouk take place if all matter attacted all other matter according to the Newtoman law All theso propositions are demonstable and demonstiated: it is a question for the mind of the reader, how far at is likely that the

[^20]first thee should be tiue, and the fast also fiom any other cause except attraction

To cany this inquiry as far as the fixed stans, it is necessaly that the consequences of the Newtonian lav should be derluced and compnert with observation. The only difficulty is one which the mathematician does not feel, but which must stuke ricades with some force who reflects on these things with an elementay knowledge of mathematics. All the celestal spaces me to us nothang but projections on a sphere in the mamer descibed in p, 3 Thus the distance between two stars docs not depend upon their ical distance only, but also upon the degiee of obliquaty undes which that distance is seen : and if one star revolve round another, it is very obvous that we do not see the real outht, but the projection of the seal obbte upon the sphere. Now this appeness at finst sight to bo only the change of one oathit into anothes, what we want to muke appaent is, that it will be a change monto an oble descibed necoudmg to laws quite different fiom thase obsen ved in the solan system, so that of the foreshovioning of the ieal oillit wese neglected, it might he inferied that the theory of mutual atiaction clocs not hold of binay systems as a sufficient explanation of observed phenomenan.

Let S be one of the stans, and let Λ. $C D$ be tho real onibit un which the other moves relatively to it, butt let its obliquily to tho sphere be such, that it is foreshortened mono $a b$ od. Supposing the prbit to be an ellipse of whych S is the focus, it followe as a necessary consequonce of S constantly attraciug the other stan, that equal aleas must be descibed in equal tumes; that if $A B C D$ be the positions of the sccond star selatively to the first, at any equal inter vals of time, then $A S B, B S C$, and $C S D$ must be aueas
equal extent Now this proposition is pactically true for the jected olbit, owing to the angle under which it is seen being so all, that any line drawn to a point in it from the earth may be asidered as at ught angles to its plane, so that the projection is Guth orthographe, as descubed in page 52 And it is a pooity of the orthogiaplic projection, that aieds equal to each other, ug puits of the same plane, me projected into other areas differ; fiom the first, but stall eyual to each other. Consequently, unl ateas appear to be descubed in equal tumes in the projected nit, which, therefore, in this particular feature, presents no malt distinction fiom the ien one
Agam, the projected obbit is an ellipse, as well as the ieal oubit ww then, having asceitanned the appar ent orbit, are we to know ether it is not the real oubit? How can we proceed to determine a real thath of the probable fract, that the oubits of double stars \exists not all so auanged that the eye views them withoul any obllaty? The thoth is, that though the apparent oibits ave ellipses, d descubed so that equal acas are passed over me equal tumes, the poont about which equal areus are desoribed in equal times is t the foous of the ellipse. This is the effect of the projection or eshortenıng, and so far as alteration of Keplen's laws is in quesin, the only effect Consequently, it must be ascertaned in what sition, if any, an actual orbit can be placed, which being itself so siled as to be among the possible onginals of the apparent orbit, zy have the star in its fociss which has been considered as the imay This diffculty, which is a purely mathematical one, is thoducerl and oveicome, the result is, that oibits are found obeygin in every iespect the lavs of Keples and therefore assmmiating e relative motions of binary systems to those of out sun and anets, and agreeng better with the observatoons than the obserthons agiee with each other. For it must be observed that the easmement of the angles of position, or angles made by the lime junction of the stas with the mendian, is a very rough and inact kmd of observation, and a diffenence of five on six degrees Il sometimes be found in the individual measures oul of suc'qsive sets talsen nearly at tho same lume But when the angles position, as they should be if the deduced osbit were perfectly
coniect, are compaed with those whel actually have been observed the differences are found to be mostly under one degiee, and very seldom above two The methods by which a minss of conflicting observations, made disctepant by instiumental and personal ertots, have been thus made to give conglomerate results according with Keplea's lans to a greater degree than could faluly have been expected fiom the appearance of the observations themselves, ale due to Sil J Merschel, who, in a paper published in the fitth volume of the Mam Astion Soc, has deduced fiom has own observations and those of others*, the elements of the oubits of γ Vugums, Castor, σ Colonæ, $\xi_{\zeta} U_{1 s æ}$ Majois, and 70 Ophuch, and in a subsequent paper, in the sixth volume, ξ Bootis, and n Coiona me added, with a new determination of γ Vingms. Thele can be nothing connected with astionomy of more interest to a general ieader, than to see the vanous steps by which a process is passing through its rough stages, before an uninteresting degiee of accuracy is cultaned. Nobody but a mathematician can sympathize with the duector of an obseivatory, using all his efforts of body and mind, so to umprove the luna theory as to dbolish the second of tume (ol thereabouts) by wheh she will not \dagger come on the meridian accorling to prediction But a second in the luna theory, answers to five yems in that of y Vugurs, belongug to a depaitment in whinch fiom the natue of the case observations are so lough, that instead of cal-

[^21]culating different poitions of the aren of an ellipse, it is as much as the data aue woith to cut out paits of a paper cllipse, and compare then weights. The following appiosimations (finst and second alieady allucled to) will show the state of this class of obseivations The scond is denved fiom the addition of a laige number of new obseivalions, and exhabits that degiee of smmanty which at once proves that much has been done, and much semans to do

Olbit of y Vugims.

Major Somiaxis	$\begin{array}{r} \text { I nst Result } \\ . \quad 11^{\prime \prime} 830 \end{array}$	$\begin{gathered} \text { Sccond Resulf, } \\ 12^{\prime \prime} \cdot 090 \end{gathered}$
Eccentricty	887 L 7	8385
Perthelion projected	$17^{\circ} 51$	$36^{\circ} 40^{\prime}$
Peuthelion fiom node on the orbut	- not given	$282^{\circ} 21^{\prime}$
Inclination to plane of the heaven	$67^{\circ} 59^{\prime}$	$67^{\circ} 2^{\prime}$
Node	- $87^{\circ} 50{ }^{\prime}$	$97^{\circ} 23^{\prime}$
Period in tiopical years	51328	62890
Mean ammal motion	--0 $0^{\circ} 70137$	$-0^{\circ} 57242$
Peuhelion passage, a d.	1834.01	$1834 \cdot 63$

Of the stars mentioned in the preceding list, the approximate elements of the real orbis aie as follow.-

Sim,	Rovolution in yonts.	Major Sembils	Necontricity,	Inclinalion to the projected urlut
\% Vinginis	629	1211000	8335	$67^{\circ}{ }^{\prime}$
Caslor	253	$8^{\prime \prime} \cdot 086$	-7582	$70^{\circ} 3^{\prime}$
σ Colone	- 287	$3^{\prime \prime} \cdot 679$	-6113	$41^{\circ} 15^{\prime}$
\% Uisro Maj.	-6t	3"'278	- 3777	$56^{\circ} 0^{\prime}$
70 Opheuchı	- 80	$4^{\prime \prime} \cdot 392$	- 4667	$48^{\circ} 5^{\prime}$
$\xi 1300$ tis	117	12'/560	- 5037	$80^{\circ} 5^{\prime}$
¢ Coione	- 44.1	$0^{\prime \prime} .8325$	-2603	$37^{\circ} 24^{\prime}$

C Cancir is suspected to sevolio man ablat nealy circula, in about fifty-five years. Sir J. Ilesschel has remalked, with considenable probability, that these onbts seem $\operatorname{anther~cometay~than~}$ planetay, that is elongated, not nenly cncula, oval forms. The last star, n Coronee, is the puncrpal tumple of Sit W. IIerschel's prediction. It has actually completed upwards of a tevolution sluce it was first obseived; and the gientest distance of the two
stars falls below what was once supposed would ever be matter of obselvation.
It must be obselved that either star may be talen as fixed the relative orbit of each round the other being the same for both Some double stars have, at the same tme, proper motion common to both, (wlich is another proof of connevion,) and thas exhibit the phenomenon of a system in a state of tianslation though space, which we must, more os less, beheve to be the case in our own Though it may not be duectly in out way, we shall take notice of a very remaikable addition, which our present knowledge of the motions of double stans makes to an aggument of ancient standing The practice of making some resemblances the grounds of suspecting otheris, is as old as any attempt to renson, and is justufinble to a cettain extent, depending upon the number of lesemblances which have been obselved The sun is a mass of mattea which, gives light ; so far it resembles the staus But of the sun we know fuither, that ats light and heat aue essential to the preservation of an immense organzed system, which could not exist withont them. 'The inference has then been dravn, not without probabilty, that the stals are of the same sel vice to other systems On the other hand, there have been those who find the use of the stans as subservient to the wants of men, and whose minds do not feel any neccsstry for fuither supposition as to the use of therr existence. To them it must at loast be conceded that theif angument is to the point: and that if it be impossible to disbeleve, consistently with all our terrestual experrence, in the utulity for some puppose or other of all that pxists, it is neumbent on us, on the othei hand, to admit a degiee of utility in navigation and geography to the fixed stans, which may Justrfy those who cin do so, in refiamung fiom fuither attempts to create uses fiom then own imaginations Noi does it in tha least touch this agument that the stars aue not all useful, for the sume applies to all the poducts of the eath which have not yot been obtained, to most of the minerals of Iudia for instance; or that the advantages of them are in many instances of comparatively late discovery, for this apphes equally to iron consteleed as the material of a rall-1ond, But the lenowledge which has been lately added to our stock on the subject of double stans, piesents an entiely new
method of viewing the sulbject. In our own system we see that the lavs under which the planets ievolve round the sun are conducive to the mantenance of then existence, and somethng of the mannes m which thus is effected. If the motion of the enth weese stopped, nothing would hunder its fullung into the sun wilh a shock which would disonganize the whole, even supposing that life and vegetation could exist up to that moment, under the contmually incteasing heat and light Now in the relative motions of the double slars, we see the same method of pieventing a mutual shock, -for whal pulpose ?-for our geography ol maygation? This is excessively dufficult to bo supposed of double slans, which we less than a second of appatent dumeter apait The aggunent in favour of olganization in the celestial bodies is very much meteased in probability by the discovery of a species of relution which mates a direct provision that, under actually exstug lavis, one shanll not become dangelous to the mantenance of the state of anothen
Among the phenomena which have been observed of bumy systems or clouble stans, one of the most remakable is theil difference of coloun, the colour of one beng usually nea one end of the prismatic spectiund, and that of the second fiom the other, the larger belug most ficquently nones to the 1 cd , and the smaller to the violet. Thete is an infinte number of vameties of colour among the heavenly bodkes; but so fat as can be ascertaned, theie ts no disthinction between the optical propeitios of the light of one star and of dnother, except thit whith also belongs to the samo diffesences of colou in tentestinal objects.

We shall finish by some notice of the nebulice on nebulous bodies, as thoy are called The first and gicat nebula of our heaven is the mullky way, extending all nound the spliele in the mannet pounted out in the maps. Of this phenomenon it is to be remarked, that the neares we thun oun cyes to it, the moie do the smaller stars multiply and coowd together. And the millsy way is found by powerful talescopes to be itself an enomous collection of minute stals, each yiclding too lutle light to bo separately visible, but conveying altogether the funt impression fiom which the name is doneved The inference dawn is, that we are situated in an mmonse statum of stans, the length and breadth of whelh is very many
times greater than its thickness, so that when we look though the thin pait, we see stans m sufficient number, but when we look along the statum, we see smallen and smallen stans, mooe theckly placed than before, and terminating in those which are so distant that therr united effect is that of a mete cloud This was the opmon, or if it be considened as perfectly established, the discovery, of Su Wilham ITerschel, and it opens a wide field of casonable speculation For bestres the milly way, the heniens ate found to be coveted with munute patches of light, noote or less thickly soattered in every pait These differ fiom stais in being of finte magntude; some of them nie visible to the maked eye on clear nights. Some, in a telescope, are found to consist of clusters of stars, in some, the unformity of appemance under a low powe is changel by a lughes moto that of a vaised scene of lights of different degrees of intensity. The presumption is, that every such nebula is a parital umucese of itself that 1 ib , composed of a number of stans so great and so distant fiom oun cluster, that the latter would appean fiom any nebula in some such form as the nebula appears to us. This is, of course, a mene pesumption, simila to those which have been nlieady noticed; but it possesses a degree of probabinty wilh whach no other hypothess can compele at present The number of forms which nebule assume, and the vanous appenances which they present in the telescope, it is out of the question to attempt descabing. The wittngs of Sir W. and Sur J. Ierschel contam almost all that is known on the subject. The catalogue of the latien, pumted in the Phul Trans for 1833, contaus a list of 2306 such objects visble at Slough : and his journey to the Cape of Good Xlope is underslood to have for one proncipal olject the extension of this list to all the nebule in the lower pat of the southen hemsphese. On this subject*" he is somewhat surprised at the extiaordinary paucity of close double stars, which cannot ause from want of power in the telescope, or fiom the nature of the clmate for he considers his mirrors as perfect as it is possible to make them; and he represents the beauty and tranquillity of the clumate to be such that the stats are teduced to all but mathematical points, and

[^22]allow of their being viewed like objects under a nicioscope But although the number of double stars is so small, consudenng the nchness of the southern heavens 10 stans, jet he represents the nebula as vely coprons, and has accordingly collected a numerons hist, \&c"

Nobody can well describe ncbula who is not in the habit of seeng them; and for this ieason we secommend the work on astionomy alieady culed, independently of other ments. The following desciptions of a few objects ate taken fiom the list of nebulæ menthoned above (Phil Trans 1833) In intelest they will be woith more than any abstract -

No $1622 . \quad$ n $4.13^{\mathrm{h}} 22^{\mathrm{m}} 39^{9}$ N.p,d $41^{\circ} 56^{\prime}$
"This vely singula object is thus described by Messier - © Nébu"'leuse sans étoles' 'On ne peut la vour que difficiement dyec "r une lunette ordmane de $3 \frac{1}{2}$ preds Elle est double, dyant chan"' cune un centre brillant élorgné l'un de l'autie de $4^{\prime} 35^{\prime \prime}$ Les "' deux atmospheres se touchent' By this desciption it is evident "that the pecular phenomena of the nebulous ang whech encucles "the cential nucleus had escaped his obsempation, as might have "been expected fiom the mfenot light of his telescopes. My father " descrubes it in his observations of Messici's nebule, (whech ne not " moluded in his catalogues,) as a bight round nebula, sunounded "with a halo or gloy at a distance fiom it, and accompaned by a "companon, but I do not find that the partal subderision of the "ang into two bianches thoughout its south following limb was " noticed by him. Thens is, however, one of its most acmakable and "interesting features. Supposing il to consist of stans, the appeall" ance it would present to a spectator placed on a planet attondant " on one of them, excentucally situated lowads the north preceding " quater of the central mass, would be cuactly sumita to that of ou " milky way, tuaverang in a manner pecisely analogous the firma" mont of lagestas, into which the cential clustes would be seen "projected, and (owng to its gicater distance) appearing, hike it, to "consist of sinns much smalle than those in other pats of the hea"vens. Can then be that we have hero a ieal bother system, " beaung a aeal physichl iesemblance and stiong analogy of stancture " to our own?-The elliptic form of the mner subdivided portion "indicales with extreme probability an elevation of that postion above
" the plane of the rest, so that the real form must be that of an ing "spllt thootgh half its cucumference, and having the splet poitions "set asunde at abdit an angle of 45° each to the plate of the other "

No. 2060 ra $10^{\prime \prime} 52 \mathrm{~m} 12^{s} \mathrm{NPD} 67^{\circ} 45^{\prime}$
"In my father"s obser vations the ture form, (lake that of a dotible" headed shot on dumb-bell,) was of couse distinctly perceived, athd " the small stais il coutams ar noticed, and taken as an indication " of its resolvibility I incline, however, to the opinon of then being " accudental stais; (of which multitudes exist in the sunounding $10-$ "gion). But here, as in the former object, the feature which gives a "peculai interest to the whole nebula, and alters entisely the light m "which its physical constitution must be consldered, has been hutherto "overlooked,-I mean the fant nebulosity which fills in the lateral "conchvities of the body, and converts them, in fact, into protubor"ances, so as to render the general outhe of the whole nebula a "regula cellipse, having for its shoiter axis the common axis of the " two bight masses of which the body consists, that is to say, the " longer axis of the oval form under wheh it was imperfectly seen "by Messier"

No 218 ra $2^{\mathrm{h}} 1 \mathrm{Im}^{\mathrm{m}} 58^{\mathrm{s}} \mathrm{NPD}$ p. $48^{\circ} 25^{\prime}$
"Ait extinoidinaty object It is of the last degiee of Ianiness, "aitd maty vely well be unpercerved though full in the field of veew. "Tibre can haddy be a doubt of its loeng a thin flat ring, of enor" míots dinehssons, seen very obliquely."

Thite observations of nebule must be principally ihtecestung on account of the slow changes which appeas to be talsug place in them. But to the purate obserter they mast be considened, in coh. junction with double stars, as affording a valuable means of tuying the power of his telescope, atd the state of the weather for obselving. Thay thay be tritged in classes acconding to the difficulty of percerving them, and thas the possesson of a telescope may determine the a ank his anstrutfert is tintilled to hold. For tho very dulferent ficcounts given by oflseetyers of the performance of objectglatsess' when cormpared with theit stated dimensions, and such other circumstances as to all apperantice should give supeilority or itferfority, rulist lead, is's to conclude that each such glass is an instruduert by itself, notz, 'altogether at ledst, 'to Be cohsidered as ohe
of a class. Such a list, under the tutle of "A List of Test Objects," was communicated by Sil J Heischel to the Astoonomical Socrety, ahd is published in the eeghth volume of thon memoirs. By permission of the Council of that Society, it is republshed at the end of this heatise The references to the catalogues, \&c., which serve as the names of the stans, hadly need explanation, sunce by the appoximate ught ascensions and noth pola distances, the places of the several objects may be found in the maps (Σ, Strave; H, W. Herschel ; h, J Heischel)
We shall fimish the chapter with an account of the selection of objects which have been made in the maps
The stans in Piazzi's, Bradley's, and Laculle's catalogues have been chosen, and all those of Flamsteed (M1. Baly's edition) are included

Pazzi's catalogue, published in 1814, contans 7646 stars, all which aue inserted in the mapls.
Bradley's stars are talken fiom the catalogue in Bessel's Fundamonta Astronomuce, published in 1.818 (the only place in which the results of Bradky's Astionomy exist in a reduced form: sec Pbiny Cyclopmida, auticle Bradles)
There are 3222 stais in this catalogue, of which only 216 are not in Prazal, all these are insetted in the maps, but aue without a reference. Lacalle's Coclum Australe Stellifer um was published in 1763, it contans observations of 10,035 stans, of wheh 1942 aue Cormed into a reduced catalogue, all of which are in the maps.

Pazal's and Bradley's stars were reduced to the epoch, 1840, by the quantilles given in each catalogue, but those of Lacallo were bought up graphically, by moving them, in longtude only, on the maps.
Lacaille is the authonty for the southern hemsphere; but since the tume when these maps were constructed, a catalogue of 006 southern stas has been prated by the Latst Indan Company, deduced by Lueulenant Johnson*, late of the SI. Felena Arullery,

[^23]from his observations while in chaige of the observatory in that island The difference between the stans' places as given by Lieutenant Johnson and by Lacalle, is not sufficient to be visible in the maps, but the following new stars, which appea to have been observed by the former only and hele given, with then numbers in the new catalogue, then magnutudes, nght ascensions and dectuations for the yeur 1830 -

Number in Johnon's Catalogue, and nam of constellintion		$\begin{aligned} & \mathrm{Mag} . \\ & 6 \frac{1}{2} \end{aligned}$	ra^{1830}			Dee. 1830SonthSit		
5	Oclans		$0^{\text {h }}$	$15^{\text {m }}$	- ${ }^{\text {B }}$	89°	18	$32^{\prime \prime} .0$
327	Octan	7	14	13	33,60	87	25	$35 \cdot 9$
388	Octans	$6 \frac{1}{2}$	15	59	39,70	86	0	$4 \cdot 7$
395	Norma	5	16	6	--	49	38	11
423	Oclan	6	16	55	6,76	80	14	504
433	Octans	6	17	14	54,90	87	37	128
496	Octa	7	19	20	L6,40	69	34	08
549	Octans	6	21	56	10,00	86	49	88
553	Gius	5	22	5	-	42	11	18
578	Octans	6	22	57	40,30	88	24	38.

Flamsteed's number has always been pefened, whete it exists, and appears in lagge puint; Lacaile's number has one line ; and that of IIevelus has two lines dawn under it; that of Ptazei, where it is the distinction of the star, is in small Italic numeials All Mi. Bally's corrections in his waluable edtion of Flamsteed's Catalogue, recently published, hase been attended to as to Bayor's letters and Flamsted's numerals. The former wese ananged by Bayen, so that the order of the letters might also be that of the mag mitudes of the stans; the iatter were attached to the stans in oider of right ascension The stars marked double are taken fiom Sit^{2} W. Herschel's Papers in the Phulosophical Tiansuctions for 1782 and 1785, and fron Stuuve's Large Catalogne, the Dorpat Calnlogue, as it is frequently termed, publshed in 1827. Piazzi has separated many of the double stars, and gien the positions of both. Where the scate will allow, the two stass are laid down, and Pazyi's numbers given. All Sir W. Herschel's Nebulw (which include

[^24]Messien's,) ane lad down with the numbers and classes affived, namely, 1000 fiom Phel Tians 1786; 1000 fiom do do 1789, and 500 from do do 1802; 500 are added from Su J. Herschel's Catalogue alteady quoted; and 629 in the southem hemisphere are taken fiom Mr. Dunlop's Paper in the Phulosophical Tiansactions fo: 1828. From the latter source the Nubecula major and minor are laud down. Su W. Herschel's nebule have numbers and classes (for instances, 23 vint); those of Sir J Herschel have no classes, but have the lager numbeng ; while those of M Dunlop are in small pint.

All these stans, as belore stated, are reduced to the year 18-10, that is, ate in the position in which they will be in the yeat 1840, To form a notion of the way in which precession will appeat to catiy a star, look at the neatest parallel of latitude, and magine the sta to move parallel to it, in the order of the signs, at the inte of a degiee in seventy-two years. The position of the parallel of latitude will eurble the reader to estumate whethe the motion is greatest in right ascension or in declmation.

The stas whech have proper motion are denoted by an anow annexed, which points out the dinection of the motion, and gives a notion whether it is great oi small. 'To gan a better dea, look at some of the stars in the pieceding list (page 89).

APPENDIX*.

Virirn the last few years, the examination and measurement of ouble stais has been prasecuted with gieal activity. Wo propose J give a slight sketch of the methods hitherto most successfully dopted in measuang donble staist, both on accoment of the matumse altue of this banch of astionomical inquily, and because it is not reluded in many of the oudmay tieatises, though peculinly withon he seach of private observers. The measurement of a double tai is the deteimination of the position of one of the stais with sgard to the other, (assuming the lager ns a fixed pomt,) so as to a ablo to distingush and define any change of position between 1 cm At first this was done by noting the differences of right asension and dechation as the stans passed ovel the mendian. but ne difficulty of obseming the difference of unht ascension made us (in most cases) an exceedingly macemate method. Sil W. Iesschel motiodaced another and much more accurate mode of obavation. Placing a whe in the focus of his eye-piece, he tuned ne eye-prece sound until the wie was parallel to the line passung nough the centies of the two stans, when they might be thended s it were in the same moment. Hence, the position of the same 'ne when perpondicular to the meudian beng lanown, the angle etween the two positions of the wire, whech gives the angle which ie line joming the stars makes with the paatlel of dauly motion, 'as also known This is Su Willum's angle of posilion, and by re futher distunction of parceding or followng, non th or south, he xed the situation of the smalles stas with respect to the latger 'thout ambiguty The distance between the stas was at first

[^25]estumated in dameters and paits of the laiger stars, but aflerwards a vely ingenous appaatus was used, min which two small moveable lamps were made to subtend in one of the observer's eyes the same augle which the magnufied stans dul in the other The distance of the lamps fiom each othes, and fiom the observel, togethet with the magnifying power of the telescope, supply sufficient data for detenmung the distance between the stans With such imperfect, of 1ather with such incouvemeut means, (for the results are wondetfully accuate, Su W. IIerschel formed his catalogues of double stars, and by a compaison between the measules of the same stas (especially of the angles of position) made at considerable intervals, asceitaned the fact that double stas anc in many mstances a connected system.

The discovenes and measurements of Su W. Herschel were made wholly with reflectung telescopes, mounted so as to move with freedom veitically and sometmes hoizontally. subsequent obseivers have for the most pait employed ielactors mounted equatorally", and the position whe micrometer. When the telescope of aus equatorial is pointed on a star, one motion, vez, that of the whole instument round its axis, with a velocity equal to the apparent motion of the hearens, will keep the sta perpetnally in the lield of veew This motion may be gyven by one hand tunning a haudle wth a Ifook's joint, whinch woiks the tangent sciew of the houn cucle, or stll better, by clock-woik The position miciomoter, in its newcest and best constuction, is of this form:-

* i, e, a telescope carried on an avis wheh is parallel to tho avis of the earth, and heube sometumes callded a parallactic insteument.

Tach of the lage exterion dived heads of Fig L is fived upon a sciew, which by its revolution canies one of the spider-web lines $3 b, C c$, Fig. 2, in a paiallel duection The small mulled-head sciew, which woiks on an interior toothed wheel, tums the whole system round in the duection of the nuow, or reversely The observation is made thas' the telescope being set upon the stais, and clamped in declination, is kept upon them by woiking a handle and Hook's joint; the small milled-head is luned round untal the spider-lne, A a, is parallel to the line joming the centres of the stans, which with a little case it may be made to thead at the same moment. The reading of the vemens*, if they have been prevously adjusted, will now point out the angle of position of the stars Now sunce Λa is in the dnection of the stans, the lines $B b$ and $C c$ are perpendicular to that duection; one of them, as $B b$, is made to bisect one of the stars by moving the anstiument by the handle and Hook's joint, whale the other, $\mathrm{C} c$, by fanning the divided head which carres it, is made to bisect the other sta The icvolutions and pats of the divided head between the comedence of the two wnes and the bisection of the two stans will, with a knowledge of the scale \dagger, give the distance.

Tig. 3. Sir TV IIerschel.

Ing Sir J. IIdrschol.

* In the macrometer heso ropresonted, whele is gaduated according to Sir J Merschel's recommendation, the divisious a min fiom 0° to 300°, and the vorniens rond 90° nud 270°, when the star, by its own motion, itung along tho fixed wre, For Sir Wilham's nomenclature tho circle should be divilel into fou quadrants, and the rondengs of tha vermess be onch 0 when the star runs ulong the fikod wre 'lo provent mislakes, a dian gram of the stars should aiways be mude at the time of obseivation,
\dagger To obtnin the value of the sente of the mecometris, sot the two moveable wnes npart a certan aumber of revolutions, and place them in the direction of tho merulan. Ob-

Some modifications in this process have lately been intiodu whach we wull now buefly mention Su Willinm Ileischel desci the position of the small star（seo fig 3，which shows the app ance of a double star in an inverting telescope），as being to north or south，preceding on following the principal stan． angles are reckoned fiom the parallel of darly molion，fiom（ the noith ol south point，each of which is manked 90° ．In figure，a ，is a noith following star；b ，soulh following；c ，south ceding，d ，noith preceding，and the miciometers constructed this nomenclature sie divided inio four quadiants．As this mod reckoning $1 s$ complex，and at lumes leads to enoors，Sil J．Horsi proposed in vol iv，of the Royal Ashon Soc Ment，p．333，＇ commence the reading of the angle fiom the meadian at the ni point，and to continue it sound in the duection $n f s p n$（noith， lowing，south，preceding，noth，）fiom 0° to 360° ，so that L° ， responds to $89^{\circ} n f, 91^{\circ}$ to $l^{\circ} s f, 181^{\circ}$ to $89^{\circ} s p, 271^{\circ}$ to $1^{\circ} n_{1}$ This proposition has been univessally alopted，at least in countiy（see Fig．4，whach is the apperent field of voew gradur according to Sir John Herschel．In thas figure the angle of posit for a is about 30° ；for $b, 135^{\circ}$ ；for $c, 190^{\circ}$ ，for $d, 330^{\circ}$ ）．Anot simplification has been pointed out，we behevo by Sir John II schel（it has ceitainly been adopted successfully）：viz．，to sulp p the fixed spider－lne A a（Fig 2）altogether，and to use tho li $\mathrm{B} b, \mathrm{C} c$ ，placed near each other，for cletermining the angle of pr tion The miciometei is then adjusted when a slai tavels al one of the wites，the instument being at iest，and the verniers sl 90° and 270° Aftel this velification is made，ol what is be the enor ascertaned，to be heieafter applied as a conection，

$$
\begin{aligned}
& \text { uere the tranaite of exporal atars of known doclination opor the wirss; thon multipl }
\end{aligned}
$$

yout hapo the seconds of appeo whoh sqresegrond to a knowh number of rovolutios
the reroup．

$$
\begin{aligned}
& \text { 848 Ypilliamen, then } \\
& h=90-\text { II an the north follownig guadrant } \\
& =90+\mathrm{H} \text { 』 south } \\
& =270-\mathrm{H} \text { jn the south phocedung quailrant } \\
& \text { 〒270,4 H } 11 \text { uolls }
\end{aligned}
$$

whes are turned round by the small mulled-head screw unthl the stans tuc enther the eaded upon one of the wies, or, beng between them, aie judged to be paiallel to them. The veinters are now read off for the angle of position This observation is iepeated until the result is satisfaclory, and then the vermers ate tuned by the milled-head though 90°, when the whes are in the proper position for taking measuies of distance. In this way the danger of the whes $B b, C c$ touchung $A a$, techuically called fiddlung, is aroided, as well as the undistmetness which with high powers wil be found in one of thee whes all at different distances* fiom the eye-glass There is, besides, tho advantage of measuing the dislance a lutle more certainly in the proper duection, and the operation is performed in less time. In measuring the distance of tivo stans, after the wre $B 6$ has been placed upon one of the stats, the lager for instance, and $\mathrm{C} a$ on the smalle, it is better to move the whole instiument by the haudle and Hook's joint until B b is placed on the smalle, and to move Cc by its diviled head to a position $\mathrm{C}^{\prime} c^{\prime}$ (see Fig. 2) to bisect the langer. The revolutions and pauts described by the divided heal now give twice the distance of the two stars, and any unceitanty about the zeio ieading is eliminated If there be any donbt about the thuth of the screws, $\mathrm{C}^{\prime} \mathrm{e}^{\prime}$ may now be considered to be the fixed wie, and $B b$ the moverble one, and thas the measure may be iepeated, in different parts of ench selew.

Tritheito wo have spoken as if the whole instument was to be moved by the observel, by hand, so as to counternel the offect of the

[^26]diunal motion. Within the last few years, surce the intioduction of lage refinctugg telescopes, clock-wook has been successfully em ployed, especially by the celebiated Fiaunhofer. The essentral qualty of a clock for cauying an equatoinally mounted telescope, is that it should move smoothly, and not be affected suddenly by any alteation of fuction, \&e Fraunhofa's clock is a tanu of wheels during an uphight spundle on which two small balls ne loung. These expand outwads by the rotatory motion of the spundle untal they abb aganst a comeal sufface above them something like an umbiella, the fiction agaunst which destioys the superabundant powe of the clock, and brings it to a unform motion, Theie is a conturance fol rasing or lowering the point on which the spindle turns, and so regulating the clock to the velocity icquired. This clock answers vely well, and is nether cumbrons not expenstve Another clock, on a sumila pronciple, but on a laiger scale and with moie powelful action, has been constructed in this countiy by Messis Tioughton and Simms. The upught spindle on this case canies a regula governor, like that attached to steam-engines, which by a double lever presses a powerful break on a wheel attached to one of the aubors of the clock when the balls are expaided to the proper distance*. In Fraunhofer's equatorals, the bssection of a star is effected by conturual allerations of the rate of the clock, by means of a long handle, which is exccedmoly, inconverient : In the appaatus of Messts. Troughton and Simms, the micrometer is fitted on a slipping-pioco (see FIg. 5) which again fixes on the end of the telescope.
By the trwo mulled-head sciewa, a very delicate motion can be givegn to the micrometer in any requied duection, withont olatory motion, so that the bisections which weet hetetofore performed by movigg the whole mstrument, are now accomplished much mose salusfactorily tiy tourohung a screw close to the observer's hands. It is tlesirable to thaye the stlipping-prece and miciometer as light ns is consisient with necessary'strength, and the sciows of the slipping-

[^27]prece should be very smooth and fine When the apparatus is prom perly made, and the clock conectly rated, the observation of such

Irg 5. Slupurg-Pieco.

double stars as the telescope will sepante, is quite as ensy as the measurement of two dots on a sheet of paper The only difficulty lefl, is that of procurng a tangent sciev to give molion to the mstiument with sufficient accuracy

There are many munutio connected with this subject which it would be tedous to explan at length, though much of the conventence and comfort of obseming depends on them. We will, howevel, mention one vely elegant mpovement by the Λ stionomer Royal in the construction of a splendid equatonal, lately presented by the Duke of Northumbeland to the Universty of Cambidger In this instument, the hou cucle, which is canaed by clock-wook, tums ficely on the lowen pivol of the polm axis, but can be clamped at pleasure to the botom frame of the axis whth cancs the vermens or menoscopes. If this hour cucle be at finst properly set, and the clock made to go sidereal time, it is evident that the vermess will show the ught ascension of the sta duectly, without any authmotical operalion whatever

When the position-micrometer is used, it is absolutely necessary that the telescope should move without any shake or jar (which is, howeve, no dificulty sunce the intioduction of clock-woil), and it is desiable that the mounting should bo finm enough to fix a star
wthin a few minutes*. If these requistes are obtained, and the tube of the telescope be strff enough to allow the observer to touch the screws of the slipping-prece and miciometer without shaking, the mounting is sufficient for the measurement of double staus. The difficulty in managing large instruments anses fiom the monstrons unclease of the , moment of inetha, (which is patited by the equable motion given by the clock,) and the tendency of the telescope and fiame to twist when pressure is appled to a longer leven, viz., at the eye end of the telescope.

Anothei instrument for measuing double stans, which requacs less steadiness, has recently been most successfully used by Piofessor Bessel, of Kongsberg This is a telescope of which the object glass is cut in two by a plane passing though the diameters of the lenses, and perpendiculan to then suifaces. One half can slide by the side of the other, and as each half gives a complete image, a double star appeas like four stars, which can be placed in a right line (this gives the angle of position), and at equal distances (whech gives the distance). The obselvations made by Bessel with the helometel, as it is called, are greatly superior in accuacy to any other observations hutherto publshed. As the operation of cutting an object glass in two is a somewhat hazaudous one, and the images formed by it never so perfect as those by an undurded glass, it would perbaps be advisable to try what could be eflected by dividug one of the lenses of an eye-piece, which would giro donble amages, and mught be appled to any telescope whatevel.

Information on the subject of double stars and nebula must bo gathered from various onginal memous The followng list contans those which aie most remarkable:-

De Novis in Cćlo sidereo phenomonis Mannheim, 1770. (Chris-

 tian Maye?.)[^28]Phil. Trans, vol. 1xxı, p. 492 -Account of measuiements of position and distance, with a descuption of a position miciometer. (W. Herschel)
—__ vol lxxit., p. 112 -A catalogue of double stass (269 in number) (W. Herschel.)
vol lxxiis, p 163 -Desciption of lamp miciometer. (W. Herschel.)
vol laxv., p 40 - Futher catalogue of double stas (434). (W Herschel)
$1801, p 353$. - * Account of changes that have happened in the relative stituation of double stan (W. Herschel.) Mem. Ast. Soc., vol 1, p 166.-WCalalogue of 145 new double stas (W, Herschel.)
——_ vol iv, p. 165.—Catalogue of 195 double stars, taken fiom Ia Lande's Histone Celeste
Phl Trans., 1824, Pal 2.-Catalogue of 380 double stas. (J. Iferschel and Soulh.)
—— 1826, Pant ||-Catalogue of 458 double stars, with a synoptical view. (Soulh)
Mom. of Ast. Soc., vol 11, p. 459.-Observations made with a twenty feet reflecting telescope. Descuptions and approximate places of 321 double and tiple stais. (J, Henschel)
vol. 14, p. 47.-Contmuation of the above (295 stars). (f Hersohel)
\longrightarrow vol. iii., p. 177.——Do. thind series (384 stars). (J, IIe1* schel)
——_vol. iv., p. 331.—Do. fouth series (1236 stars), (J IIer* schel.)
——_ vol, iv, p. 1.-Do. fifth series, with remaiks (2007 stans) (J. Herschel)
These five senes ale not to be considered accurate measues. They ane such double stars as weie met with by Su J. Heischel in his sweeps for nebule, \&c
Mem. Ast. Soo., vol. v., p. J3.-Mıcrometrical measures of 364 double stars, wilh a seven feet equatomal (J. Herschel)

[^29]Menn. Ast Soc, vol. v, p. 171.r.-On the investigation of tho onbits of double starb, boing a supplement to a paper cutuled 'Miciomelucal Measues.' (J. Horschel.)
Mem Camb Phl. Soc,, vol, uv, p 425,-Descuption of a machine for esolving by inspection certan mportant forms, \&c, of toanscendental equalions. (J. Merschel.)
Mem Astron Soc, vol, vi., p 149.-Notice of the ellpptic ob bits of ξ Boots, γ Vurguis, n Coionce (J. IIerschrl) vol vin, p. 37.-Second senes of mecrometrical measwements. (J. IIerschel)
vol. un., p 257.-Approximate places of double stars m the southern hemisphese. (Dunlop.)
———vol, v., p. 135 -Observations of the tuple sta ζ Cancu (Dawes)
vol, \mathbf{v}, p. $1.39,-\mathrm{Ob}$ servations of double stans. (7ares.) rol. vin., p. 6L.,-mensuements of L'2l. double stas. (Dawcs.)
Sur. J Lerschel is now at the Cape, measuring the double stars of tho sonthen hemisphere, and noting the nebulo.
Stinve, Calalogus novas stellay um daplacium (31.L2 slaus). Dorpati, 1827.
Astronomische Nachuchten, No. 210, vol. x., p. 392, contaills observations of thaty-nine double stas by Bessel, with a comparison of his results with those of Strue These aro probally the best zesulls in distance yet published. Shuve secms to have a constant enor of about $0^{\prime \prime} \cdot 3$ in his distances, which are too small. liutlien catalogues may be expected from Bessel and Struye.

NEBULAR.

Connoissance dos Tems, 1784.-100 nebulo by Mcessier, 3 by Mechan.
Phel. Trans, vol. laxvi, p. 457.-Catalogue of 1000 nebulen and clusters. (WV. IIerschel.)

[^30]Phil. Thans, vol. Kxix,, p 212-Catalogue of a second thousand new nebule and clusters, with remaiks on the constuction of the heavens (W II Ierschel) 1802, p 477 -Catalogue of 500 new nebulx, nebulous stars, planetary nebula, clusters, with remalks on the constuction of the heavens. (W Her schel)

1811, p. 269.-Astionomical observations relatug to the constuction of the heavens, \&c (W IIerschal)
\longrightarrow 1814, p 248.-Contunuation of the last. (W ITerschel)
Many most valuable memors, by Sir W Herschel, which it would be tedious and ont of place to specify here, ate to be found in the volumes of the Phil. Thang Such are his ealy views on the construction of the heavens-wol lxxiv., p 437 ; vol lxxv., p 213 , 1795, p. 46, 1796, p. 166 On the companative bughtness of stas, $\& \mathrm{c}-1796, \mathrm{p} .166,1797, \mathrm{pp} 142$ and $293,1799, \mathrm{p} 121$ On his telescopes and power of penctating into space-1795, p 347; 1800, p 49; 1817, p. 302; 1818, p 429, \&c It is hoped that a complete collection of Sir W. Heerschel's Memons may be given to the public at no very distant period.
Phl Trans, 1828, p 113.-Nebulæ and clustes in the southem hemisphete. (Dunlop.)
Phil. Thans., 1883, Patt 2, p. 359.-A catalogue of nebulce, J. Herschel. This most important memorr is the result of a 1evision of the heavens, by Sir J. Herschel, with a simular instument to that used by his immortal fathei On the retuin of Sir J. Herschel fiom the Cape of Good Hope, we may hope for a like account of the southern hemsphere, thus completung a statistical survey of the heavens at a given epoch. On lookng over the list of the memons cited, it is obvious how entucly nebula and double stas may be considered as the acquisition and mhentance of the Herschels, and this notion will be much stiengthened by a close examination of the substance of the memons Others may have measured and noted very laudably, but philosophical views and practical detals are almost wholly due to them.

A LIST OF TLST OBJJCTS

Prncipally Double $\$$ tnre arranged in Olabecs for the trial of Telcesopos in various regpocts as to light, distinothess \&c By Sir J Γ W Irrachir K G II \&o \&o

N 13 No Dould Slar is Insortod in this lint which line not beon disl ictly sop rated by tho 20 Coot Rofloctor or 7 foot Jrpuntorial

Class A-Douhif Stins neamey hquil 1 st Diviazon Large Slars Ohi magnitudo nud upparela					
OhJeel	11 A 1880 士	N 1 D $1800 \pm$	Dit	M gulitul	If arka
γ Ariolls	14.480	713	0	$1=4$	
Castor	7235	67 4\%	0	3 3t	
${ }_{\text {a }}$ Plisci min	1630	88	6	1.4	
ζ Aquaril	22108	$00 \quad 60$	4	5 5	
4 Draconia	1718	3618	4	0×6	
Anitrom 37 (B)	$28 \quad 507$	$67 \quad 18$	4	$0-0$	
41 Doulin (H)	$11 \$ 80$	41.38	3	5 5	
\% Uram	1188	8730	8	$5,5+$	
ζ \% bils	14.328	7501	1	05	
γ Virghins	12328	0029	14	4×1	
Class Λ-3nd Diviswon Shiall Stans 7 I Ill mag					
y 2961	18. 800	4840	6	7 ?	
Andir m 28 (1)	28434	\$4 4	1	7 - 7	
± 1010	14601	80	1	7×7	
± 2047	2193	$24 \quad 28$	3	$7 \square 7$	
IN 198	1205	72.22	3	$7=7$	
Caromin 1 (B)	18100	0280	2	$7-7$	
± 1333	477	8353	1.7	$7=7$	
* ' Ooiono	18161	80	1	7,7	The clore atar
89 Ahurom 11	0 \% 60	0710	\%	$7=7$	
- Arldtr	$\begin{array}{rr}2 & 494 \\ 80 & 48,1\end{array}$	$\begin{array}{ll}69 & 28 \\ 90 & 17\end{array}$	4	7,78 7	$4 \quad \mathrm{kmi}$
8th mapuitudes					
\% 188		$\begin{array}{ll}79 & 34 \\ 60\end{array}$	4	$\begin{array}{ll}8 & 8 \\ 8\end{array}$	
H1 1182	38201	, 50680	4	$\begin{array}{lll}8 & 8 \\ 8 & 8 \\ 8 & 8 & 8\end{array}$	
$\left.\mathrm{I}_{4}\right]_{089}$	$\begin{array}{ll}0 \\ 8 & 81,9 \\ 43\end{array}$		4 3	$8=8$ 8 8	
\% 9891578	$\begin{array}{cc}8 & 431 \\ 0 & 0,0\end{array}$	$\begin{array}{cc}84 & 17 \\ 01 & 8\end{array}$	${ }_{2}^{3}$	$8-8$ 8 8	
Lyhdo 157 ${ }^{\text {a }}$	${ }^{0} 808$	81	24	8 ± 8 $8=8$	
		$\begin{array}{ll}37 & 44 \\ 78 & 38\end{array}$	$\frac{2}{2}$	$8=8$ $8=8$	
+2701	- 0 \% 48	-180 80	${ }^{2}$	8 ${ }_{8}^{8} 8$	
8. 801	- 0 0, 10.3	160 14	1	8 8	
81888	$18.80{ }^{2}$		${ }^{*}$		
- 4 皆 1888	118		1	8	
	1122	38.40	\%	88	

Olass $\Lambda_{1}-2 n d$ Division，contznted． Dha maguiluiles					
Obsoat	1A $1880 \pm$	NP．D $1830 \pm$	Du．	Magnthulor，	nomarkr
	${ }_{0}^{10}$	${ }_{82}^{8}$ g ${ }^{\text {g }}$	${ }_{5}^{H}$		
8． 2.4247	$20 \quad 650$	$\begin{array}{cc}82 & \\ 63 & \\ 81\end{array}$	$\stackrel{5}{4}$	$9=0$ $0=0$	
${ }^{8} 777$	$\square^{6} 33,1$	6769	3	$9=0$	
E． 1864	$\begin{array}{ll}11 & 30,7 \\ 14 & 198\end{array}$	${ }^{62} 86$	9	0×0	
a．${ }_{\text {a }}$	$\begin{array}{cc}14 & 19,8 \\ 21 & 49,6\end{array}$	63 68 02 38 88	$\stackrel{2}{14}$	9 － 0	
צ 1620	1283	$18 \quad 69$	1	9×0	
± 2826	21 38，2	88.50	1	0,0	
8， 2934	$\begin{array}{ll}22 & 28,9\end{array}$	$\begin{array}{ll}20 & 68 \\ 30\end{array}$	1	$9-0$	
¢ 1093 $\times 2500$	$\begin{array}{rrr}7 & 17,1 \\ 10 & 14,9\end{array}$	$\begin{array}{lr} 30 & 41 \\ 27 & 7 \end{array}$	1	${ }_{0}^{9} ; 9$	
10th magnitudes，					
h． 1780	23 17，0	640	5	$10=10$	
${ }^{\prime} 418$	78,8	${ }^{86} \quad 50$	4	$10 \equiv 10$	
${ }^{4} \mathrm{H} 450$	8104	$71 \quad 20$	3	$10=10$	
	$\begin{array}{cc}20 & 8,2 \\ 22 & 18,8\end{array}$	$\begin{array}{cc}40 \\ 76 & 0 \\ 73\end{array}$	${ }_{2}^{24}$	10	
${ }^{\text {h }} 1637$	${ }_{20}^{20} 80$	10562	18	$10 \equiv 10$	
41305	${ }^{19} 10,6$	${ }^{63} 12$	17	$10=10$	
${ }^{2} \times 1705$	2117,0	$\begin{array}{ll}30 & 3 \\ 94 & 31\end{array}$	1	$10=10$	
h y y	1 22,4 4 42,8	$\begin{array}{ll}94 & 31 \\ 80 & 4\end{array}$	1	10 10 10 10	
$\times 1038$	${ }^{4} \mathrm{H} 0,0$	${ }_{37}{ }^{81} 10$	$1{ }^{2}$	10 三 10	
又． 1504	10 64，9	$85 \quad 27$	1	$10=10$	
11th magnitudos，					
${ }^{\text {h }} 1104$	1 100，2	$22 \quad 0$	\bigcirc	$11=11$	
${ }^{7} 121888^{188 .}$	$18.13,0$	$\begin{array}{ll}94 & 10 \\ 34 & 10\end{array}$	4	11 ± 11	
	$\begin{array}{cc}183 & 0,0 \\ 0 & 06,5\end{array}$	$\begin{array}{cc}34 & 4 \\ 48 \\ 48\end{array}$	${ }_{3}^{4}$	$11=11$	
	$10 \quad 27,4$	［4 37	3	11 三11	
h． 1770	2280,7	0610	3	$11=11$	
h． 1895		940 ${ }^{\text {a }}$	8	1 ± 11	＊
${ }^{\text {hi，}} 1085$	${ }_{8}^{4}{ }^{4} 8,7$		${ }_{\text {2a }}^{2}$ ：	$11 \ni 11$	
\％ 1032	$17^{2} 37,5$	$65 * 4$	19	11 三 11	
${ }^{\prime}$1038 1855.	${ }^{0} 20,5$	$27 \quad 13$	15	11 こ 11	
$\begin{array}{ll}\boldsymbol{H} & 1855 \\ h & 1898\end{array}$	$\begin{array}{ll}23 & 4,0 \\ 28 & 62,1\end{array}$	$\begin{array}{ll}45 & 21 \\ 29 & 49\end{array}$		11 ± 11	
Crass A，－3id Diutaon Minule Stars（balow 11th madnifyde）．					
1217 magnitudos					
－${ }^{4} 800$	${ }^{6} 42,3$	034	3	12 － 12	
	$\begin{array}{ll}14 & 11,5 \\ 19 & 17,1\end{array}$	$\begin{array}{ll}60 & 36 \\ 43 & 56\end{array}$	3	$12=12$	
	$\begin{array}{ll}19 & 17,1 \\ 885,4\end{array}$	$\begin{array}{ll}43 & 63 \\ 608 & 61\end{array}$		$\begin{array}{r}12 \\ 18 \\ 18 \\ \hline\end{array}$	
h． 1417 ．	1988	$100 \quad 13$	${ }_{2}^{24}$	$\stackrel{1}{18}$	
$h_{1} 1300$ 。	17 27， 0	0484	$\%$	$18=12$	$\left\{\begin{array}{c} \text { Tho mmall star } \\ \text { copulas } \end{array}\right.$
13th maguitudes．					
h． 085		9018		$13=13$	
${ }^{\text {a }} 70$.	7 45，3	$78 \quad 16$	3：•	极 $=13$	＊
${ }^{4}$ ，101d	${ }^{23} \quad 44,3$		${ }^{2}$	$18=13$	
－n，${ }^{\text {a }}$ ， 704	21 48，2	68 \％4	$1 \frac{1}{1}$	19×18	

Class D.-Ertiremely unequalled Stars, contunued.

Object	R A $1830 \pm$	NPD	$1830 \pm$	D1st	Mngnlludos	Mamarks,
	${ }^{\text {h }} \mathrm{m}$	\%	1	"		
x. 324	244,9		32	$\left\{\begin{array}{r}12 \\ 8\end{array}\right.$	$8,\left\{\begin{array}{l}16 . . . \\ 16 . . .\end{array}\right.$	$\}$ Tiple.
${ }_{5}$ Pogass	22 38,0		43	11	- , 10	$\left\{\begin{array}{l} \text { Triple. The closo } \\ \text { sfar. } \end{array}\right.$
μ^{2} Cancra,	8 49,0	77	28	10	4.5, 16...	
h 8032	$21.21,0$	85	51	10	8 , 16...	
h. 338	3 44, 3	92	53	10	5, 10.	
h. 2732	14126,4	44	9	9	9, 16...	
h^{2577}.	11 25,5	01	18	8	9, 10...	
u^{8} Capricorni	20 8,7	103	4	8	3, $16 .$.	
04 Celı Fl .	3 4,0	91	50	${ }^{0}$	\% , 10..	
30 Pegast Fl.	$22 \quad 11,8$		4	$\left\{\begin{array}{l}6 \\ 4\end{array}\right.$	$0,\left\{\begin{array}{l}16, \\ 16 .+1\end{array}\right.$	Truple.
¢ 333 .	$3 \quad 18,9$	57	4	3	0 , 16...	

N B Among thes class D are somo vory difhuilt, and some comparalively ensy objects, bul they require ae exammation to anange them in thour proner ordor.

Class \mathbb{E} - llersolyable Clusfers of Stars

For trying the space penetialng powens of T'elescopes.

Not resolvable into Stars by Telescopes of any or dinany power, but picsenting rery different appeanances in Telescopes of clufforent degineos of optical capacity.

Nebula in Orion	5	27.2	95	32	
Mesper 51.	13	22,0	41	55	$*$
Méstier 27	19	62,2	67	44	
Messucr 17	18	108	100	15	
Messidr 60 .	12	35,1	77	31	A double nebula,
1 V 41 (II)	17	52,0	113	1	
V: 15	20	38,9	59	53	Passes through k Cygni,
V, 19	12	12,0	48	20	A famt olject.
- Messier 57	18	48, ${ }^{\circ}$	57	10	The annular nebula in Lyra,

PUBLISHED BY THE SOCIETY FOR TIIE DIFTUSION of USIEFUL KNOWLEDGE.

I.

SIX MAPS of the WORLD, laid down on the Gnomonic Piojoction, in size 10 incles by 10 , pice 3 s , phan, 4 s , 0 d. coloment.

1L.

SIX MAPS of the STARS, on the same projection, 10 inches by 10 , meluding all tho Stans to the Sivil Magnitudo, prico 3 s. plam, bs coloued.

111
A GENERAL GEOGRAPIICAL ATLAS, consisting of Moden nunl Anolent Maps, and Plans of Cities, vanying in azza from 14 finchoq by 10 , to 17 hachay by 14, Published in Numbers, ench contahuing two Maps, pice is pae number platin; 18. Od per number coloutad.
*** $_{\text {* }}$ The Work las alleady phocoeded to Slxty Numbers; and will bo completal in about Twolve more a Number appears overy month,

These Maps ato compiled fiom the very best Authortios, both onforal and privato. The Scale vales accoading to the neknowlelged importance of the 1 espectiva counti los nund distucts, The Anorent Maps--n voly useful and interesting feitite of whitch is, that they me precisely on tho snme soale ns the couesponding Mndonn-aro oomplted with the gioatest care, and undor tho most rigoous aonatiny, 'lino whole aro onglaveil int tho best manner, on Steel, and thois chenpmess is thesampled in any connthy.

IV.

PRACTICAL GEOMETRY, LINEAR PERSPECTIVE, and PRO. JEARION; inchuding Isometrical Porspective, Piojoctions of tho Sphora, and tho Piojection of Shadows, with Dosciptions of the Pihaipal Instuments usad in (leo. motaical Diawing, \&o. By Triomas Bnadily. In 8vo, with Eight Dingaving on Steel, and mone than 300 on Wond. Pilco, in eloth bonds, $7 s$,

Y,

A TREATISE on FRIENDLY SOCIEMIES; in which the Dochine of Intorast of Monoy, and the Doctitne of leobability, ave prationlly applied to tho
 Inguranco Company In Bvo, phice, in doth boads, os.

This Theatise is founded on the Answers proaured by the Soolety to inquirios sont to Fiendly Sooiaties in most of the Counties of England. Many of tho Sohedulos "wele defective, but a sufforent number of returns werorecedved to show the progress
of tho members of difterent Socioties, taken indisciminatoly tiom all pats of ling land, whilo passung though, in the aggiegnte, 21,323 vens of hfe, pimeipally between tho ages 20 and 70 .

V1
A IIISTORY of the CIIURCII, fiom the Emuliest $\Lambda_{\text {ges to the Refor - }}$ mation By the Rev, Gforge Whaminaton, Vini of Minshm, and Piobomary of Chichester. Very handsomely pintod in 3 vols, Bvo., puce, in cloth, 16.10 s,
*** This is a somewhat enlarged Edition of the Instory of tho Church pubhshed in tho Labiay of Useful Knowledge, and has boen punted fon tho convenionce of those desirous of haviug tho Woik in a laigo type The ougual Lilition, in ono Volume, 19 sold an usual.

Also,
 THE LIBRARY OF USEFUL KNOWLEDGE,

Pubhshed in Numbers al Sirpence cauh.
Or this Solies of Trentuses,-commenced in the yen 182\%, nud contumed, with sencely any mteuraption, int the inte of Two Numbers endi Month,-2lis Numbers have appeared, compusing a gieat vaisty of condensed infomation in Nafunat Pimlosopiyy, Iligtony, Brognapiey, till Mafiemaries, and other banches of Usefil Knowledge. These Numbor ano now, for the most patt, formod into Volumes. Those which are in progiess are on the following suljects :-

HISTORY OF ENGLAND
HISTORY OF FRANCE.
, POLITICAL GROGRAPIIY.
BOTANY, \&o, \&o.

THE PARMERS' SERIES OI THE LIDRARY OF USEFUL KNOWLIEDGE.

Of this potion of the Wrok Eighty five Numbers ato publlshoil, fllo for tho most part * completed in volumes, on tho following subjects.-

THE LORSSE, 1 vol, price $9 s$ 6d
BRITfSII CATTLLE, 1 vol, pico 1ps. od,
BRITISH HUSBANDRY, vol, last, pice $0 s, 0 d$
On'planting, i vol, puce 3 s
The Second Yolume of British IIusbandy, and a worls on Sleop, aro in progress, in monthly numbers.

[^0]: I.ONDON

 Printed by Wirianat Gowna nud Sons,
 ${ }_{1}^{1}$
 Sinmford Striet.

[^1]: * This species of projection has been put in practice. Soo Lalande, Bibtiographio Astronomique, mp, 832 aid 661 ,

[^2]: * The number of surfaces and solid angles in a solid bounded by planos will always together exceed the number of edges by hoo thus in the cube, thete aresux surfices, enght angles and twulve edges, and

 $$
 6+8=12+2
 $$

[^3]: plamed.

[^4]: * Ihe complement is what remnus after subtrnelung an arc from 90°. Thus 30° is the complement of 60°.

[^5]: * Very fetr persons (except scamen) havo distinct idens upon the meaning of tho moro complicated poinls of the compass. The fullowing two rules ambrace all the caseq. When the letters indicating two points are jound togethor, the pount which is half way between the two 18 meant , thus $N \mathrm{~N}$ is half way Lotween mosth and east; and N N. L. is half way between north and north-east When tho lefters of two poonts aro jonned together with the intermediate vord by, or the leffer b, it menns the point whin comen
 lows north towards the east; $S T, b, S$. is tho next point to south cast, looking towardy (the routh

[^6]: * For a short account of whom, seo I'cmy Cyoloperdta
 + Posmbly the Usus Ash onomacus, 8 c ; of J3artachus, publathed in 1061, may have proviously contaned the samo thang Son Lalande, Buhhogi aphe Astronomurue, pago 240 The same may bo saul of the phansphere of Stampion, whach hath a moteable hoizon, Sue prge 3ll.

[^7]: * By much the best plamsphere of thas kind wheh we hnve found, is fint construcled by ifessrs Smuth amd Son, 172, Straud. It 1s, of course, adapted to Groensuch, but will nat be very wrong, and may be easily conected, for any pait of dungiand,

 4 Hist Ast, Anc, yol, Hi. p, 480.

[^8]: * It ss stated in thas work, but no where clso that wo have found, that the milky way was ancently called "Wathing Strect," and the seren stars of Urea Mnjor, "the brood lun "
 + We quote the following, as pait of one of our old "Deplanations of Maps of the Stars"
 "Sohulat I marvell why, beeng she (Uran Major) hath the forme of a beate, her tailo should be so loug.
 on her tayle, nud theneby duwa her un min the heaven, so that blee of hei sufo being very weightie, and the distance from the couth to the heanens vely great, there was gicat hiselihood that hat tale must strich Othen cason know I none."

[^9]: * To oun disnppontment, thas worle containe nothug on tha peome 1 ar grestion, cacept what is to bo fomud in tho map, 'dhes was afterwards copeed moto Monel'y cditiven ul' Aratus, 1550.

[^10]: * It has been suggested to us, that Piolemy himself phaced some constellations diffuently from othens, that 1s, some presenting the fiont and somo tho lack: ant Virgo is partucularly mstanced, in whech one stan (o) as descubed by him as bemg in tho comnrenance (reoowtor). But in this constellintion, as an all others, tho "nght" and "lefl"
 placed in the countenance, to a persom looking fiom belund, if the free be turnod sulewhys, as in the map lime placing of stars in the wings of Virgo is to us a stiong pe sumption that the bnek of tho figrure was looked at oum ceaders must have obsemved tho awkward manncr in wheh these appondages me obliged to bo bronght fonwad when the fiont of the figure is dawn in the usual way On thes vely point, Ptolemy mentions has havag removed some stars fiom tho wangs to the sides, to preserve the natmal appearance of the figue Wouk ha havo thought one positon mote natuml than another had tho wings been m hont? the senden may decde for himself, and porkaps tho moio safely (if wo may say it), that the chuestion is not how ludes would binve worn thon wings, had thoy them, but how a mathomatician would havo thought thoy ought to have wom them

 Inpparchus expressly says, that every borly turns all the constellations towards tho insade of the unverse (Petanus, U_{1} anologran, p 181) 13 nit wo cannot asceatam how ho supposes them to bo looked at, whuther fom the outside or insade.

[^11]: * Tho focal length of a telescope sa tho distance of tho focus of the olject-glans from the glabs ingelf; but as the oyoglats sa very hear the focus of the olject-glass, the focel length miny be inken for the length of the tolescopiontsolf,
 matrument, whech resombles tho theodolito in princigle, aro now not so much wed.

[^12]: * Such right asconsions and dechuations aro usually put down with as much appeannte of accuracy as if at was roally meant to bo implod that tho instrmant used Whs fit for such close determinations, Tho reason 18 , that sinca all wheh is known as that tho mstrument wall bo wrong, but not which way at wall be wrong, whethor an oxcess or dofect, any altonation for the sake of wound numbors might bo an mencase of the ornor.

[^13]: * Alcxander Plccolomint, born at Siemna, 1508; died thore, 1578. Ho was Archbishop of Patras, and condjuto of Sienna, and was the first Italian who wroto on mathematical and philosopheul subjects m has native langurge Jue has also somo repulation as a comic writor Iho finst edinon of the book citod in tho text bears, in
 Vossme, Baylo, \&c. Thero ss afull account in the Elogi deglt Vommi ilhashi Toseam, Itucca, 177l.
 \dagger Vogho cho sappiate ancora che questo stello, cho 10 who dotto, put principali, o juu charo, cha 20 consideso fino alla quata grander 2 ; tutto ho notato in 2 predi do to fauolo di qual si uoglia ımanagime, ho notato dico, ciascheduna con una lottora do I'nifnbeto. o questo ho fatto, acciocho por no lo figure lo nconosciato, o sappato distin-
 braceso, a cosz de l' altro parimento Bon 6 uoro, cho pot no lo figure lo posto molto folte aloune stolle pin, lequale a piedi do do fanole non ho numerate. o consoguentemonte tall atello non $60 n$ notato con luttora $d^{\prime \prime}$ alfinboto, a quosto ho fatto porcho por in brourit do In carta, tanta moltitudine di carnftere de l' alfaboto faroblo in molte figuro non poca confusione ma ho auertilo di fur quosto un quello stollo, loquali facilmonto possa conaldoraral mela parto stono do l' mmagine, por la memanza de aleuno altro con al caraltor notato: como il tutto bensamo compenderote, sonza cho do put in abo m distenda, Ancora non ho noluto come fa Igino wo lo dette figuro depingero imome bri dı quigh aumali, cho 1 looth han fiato ossor nol Crolo, porcho ancor cho cid fincesso alguanto th ungliczza a l'ocelno, mondumono offusearebbe ancor parmento la stolle, o farebbe nom poca confusions ed io ho putosto voluto haver riguardo a la chareaza do In figurn, cho a In unghezan do l' occhog ossendo il mio primo intonto, mostiar qualle figuro plu dlatintnmonto cli' io posso, a nel modo olso lo sono, sondo ollo sol ilt stello mormato senza bancein no piedi, como caschodun pute nodero.
 \ddagger Sce Ponny Cxoyolinedis, Articlo Baxra,
 \& Schillor Inmself, Riccioli and Gassencl, atalo it dratinctly, Seo Pbnax Crer, cuted. above,

[^14]: * It is found that two different persons with the ghmo telescope mako up two difforont instruments, and the discrepancy is athll more mereased whon different teloscones are used, in dafferont climates, or on diffexent agghts.

[^15]: * Annual Report of tho Roval Astronomeal Suciety for 1831. Ihs calaloges is stated to bit m course of publication by the Lords of the Almmally,

[^16]: * The readen will find the 7tethise on sfitommy, in the Calmet Cyclopmedia, tho most masiructive and correct in tho Enghah language, and for the history of astronomeal

[^17]: * Abridged from a paper by Mr. Baly, in the fith volumo of tho Memorrs of tho Royal Astronomical Society. A catnlogio of propor motions, by M. Argolamior, of Alo, has yery recently been pubhshed, which, if rayuisite, wo slall noltco in tho Appendix.

[^18]: * Wo are quito sonous in saying that tho following extuact from Sir J. Itonschels Astromony, (Cab Cycl) contams a better viow of tho solar systom than a great many vohmes whach proceded, with thour clap traps of milhons of millions of milog, Sce tho Work, p. 287.
 'Choose any woll-lovelled field on bowling greon. On it place a globo, two feot int dinneter, this will reprosent tho sum Mencury will be roprosented by a gran of mus. tard seed, on tho cnecumfenonce of a carcla I6d foot in damoter for its oibit, Vonus, a pea on a circle 284 feet in diamotel, tho Earth also n pen, on a circlo of 430 foct Mars, a rather large pan's huad, on a carclo of 654 fact; Jumo, Cores, Vozin, and Pullas, grams of sand, in orbits of from 1000 to 1200 feet, Jupitor, a moderatomsizod oxango, in a curcle nearly latf a mile across; Saturn, a amall orango, on acrcle of four fifths of a mile; and Vrapus, a full-sized chorry, or small plum, upon the cireumferenco of a carclo more than a mile nad a half in diameter, $A s$ to getting corroct notions on thes subject by drawnge erroles on paper, or still worse, from those vory childish toys called orreries, it is out of the question To mitato the motions of the planets, in the above-mentionod orbite, Morcury must describe its otvn duameter in 41 seconds, Vonus in 4 ininutos 14 geconds, the Farth in 7 minutes, Mars in 4 minntes 48 soconds; Juphtor $1 \mu 2$ hours 56 minutes, Saturn in 3 hours 13 minutes, and Uranus in 2 hours 10 minutos.' 10 complete tho above, wo must ndd, that the model of the nearost fived star must bu at least, 6000 miles dastant from the bowling green.

[^19]: employed in leeping tho star in tho field. Clochonvork as now mado at a chenp rate, when companod with the puce of a good tolosenge.

[^20]: * Proved by Maskelyne's and Cavendsh'o experment. Sto d'pinx Cxolug mitelo Arimiolion.

[^21]: * The olsservers who have forwarded this, the most miteresting addinon to the plonomena of astionomy suce the time of Gubieo, ato (in alphabeheal oddor, and tho hemer with there htles) P1ofessor Amel, M, Bossel, Bradley, Rev, TV. R, Jawos, W ILerschel, Sir J. Horachel, Maskelyna, Mayer, Pound, Captam Sinyth, R N, Sn J, South, Piofessor Struvo.
 \dagger Tho following anpposed dinlogno betweon two astronomors is not oxaggantod - -
 A. Have you seen the -- volume of ubservations for this your?
 $B \mathrm{No}$, but 1 ann told the moon is vory much out.
 A Xes, andeed, dinost tho seconds in ono phace.
 B The small plants altogether wiong, as usual, I suppose?
 A_{1} Yes, Pallis is ont meneteen seconds !-however, some of that is in the eproch,
 ' B I womder whethen we shall over know' anything at all alsout those bmall phunets, se p

 This will serve the reader to adjust has nothoms, when he hears, in one point of voov, that modern astionomy is, very correct, and in another that it is all wiong. The fiat looks to what has been obtainod ; the second to what romans to be done.

[^22]: * Sisi Soc, Monllily Nohee, Dec, 2885.

[^23]: *This catalogus obtaned tho gold medal of the Astronomen! Society, and though tho undruments omployed were not of tho vory first dercifhom, it was assented by the committe appomed to examine 11 , to be capnble of vyug with those whelh have sasucd from tho first-ratu observatorion of thurepie,

[^24]: * Thoy do not appear in tho Astronomacal Socioty's Catalogyo, nor in Lacaille.

[^25]: * For this Appends the aulhor 18 midebtod to has frend the Rev, R Sheepshanks. t Tho obsorvation of nduda requires so much light, that ouly felescopes of tho ugest aperture can bo usefully employod in the pursult. It is to fhe tho ILeschole int seionco is mideted for almost evory inng wheh ss positively and conectly known 1 this department of astronomy, whech, with tho researehes as to doublo stars, may a called the Her sehehan branch of Astonomy,
 \ddagger Simply by lumng tho oyenplece until ono of the stars runs nong tho whe,

[^26]: * This may be obyated by pushing in or pulling out the eye-puece betwean the two measures of position and distance, but besides the troublo and loss of tano, theno is some risic, if the oyo-pneco move stifly, of deranging tha appanatus
 \dagger This yero is thus determuch, 'Ihe wiro $\mathrm{C} e$ is brought to touch $\mathrm{B} l$ first on ond side and then on the other, and the mean of the seadings of the metomoter hond in ench posstion is the readug when the wnos connde, The differenee of thes readmg flom 0 is added to or subsuacted fom all tho subsequent readhugs of $\mathrm{C} \ell$, necouding as the zero ceadiug is backivards from 0 or forwaris, on the onder of the graduation, just ths the andex-erroo of a bextant. In this method, 136 ia a fixed wire In tho muthodrocommondod in tho text, (it is duo to Sir J IIorschel,) ono of tho readings of tho meromoter is to bo subtraceal from the olkes, but thas will cause no embarrassmont to an finteligent observer.
 1 Tho Gormans enll this micromotor tho "reponiling thread macrometer"

[^27]: * Eon a dodecription and figthe of this'
 hia jargest equatorials hitherto constricted, which itioarriod with groat tialh and

[^28]: * Ady congiderablo doviation or want of adjustment of the instrumont will affect naglos of ppositpu observed far from tho meridian It must, howevor, bo yoiy largo to do any sensitide, anfury; and if tho floxuro bo noarly constant in the same position, if riay be, allowed for,' For the adjustments of the equatorial, see a Memon by M.

[^29]: *Sand to be a continuntion of a paper in the vol. for 1803 , p. 389 , where however no such panea apyears
 \dagger The paper contans many valuable notes nad romaks by Sir J Iterschel.

[^30]: * This is a descuption of the easiost, as well an the most elogant and necurnio mannor of invosifgatuge tho orbits of double stars, chofly by a graphucal mothod, whith is appltw cable, and indeed has been apphed to many physken questions. Tho following momoir is a sort of supplement to it. M. Snyary and Profossor linolo havo solved the eamo probien gromotrieally, but not wild equal yracticnl success.

